File: MB03YA.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (297 lines) | stat: -rw-r--r-- 10,731 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
      SUBROUTINE MB03YA( WANTT, WANTQ, WANTZ, N, ILO, IHI, ILOQ, IHIQ,
     $                   POS, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To annihilate one or two entries on the subdiagonal of the
C     Hessenberg matrix A for dealing with zero elements on the diagonal
C     of the triangular matrix B.
C
C     MB03YA is an auxiliary routine called by SLICOT Library routines
C     MB03XP and MB03YD.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     WANTT   LOGICAL
C             Indicates whether the user wishes to compute the full
C             Schur form or the eigenvalues only, as follows:
C             = .TRUE. :  Compute the full Schur form;
C             = .FALSE.:  compute the eigenvalues only.
C
C     WANTQ   LOGICAL
C             Indicates whether or not the user wishes to accumulate
C             the matrix Q as follows:
C             = .TRUE. :  The matrix Q is updated;
C             = .FALSE.:  the matrix Q is not required.
C
C     WANTZ   LOGICAL
C             Indicates whether or not the user wishes to accumulate
C             the matrix Z as follows:
C             = .TRUE. :  The matrix Z is updated;
C             = .FALSE.:  the matrix Z is not required.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A and B. N >= 0.
C
C     ILO     (input) INTEGER
C     IHI     (input) INTEGER
C             It is assumed that the matrices A and B are already
C             (quasi) upper triangular in rows and columns 1:ILO-1 and
C             IHI+1:N. The routine works primarily with the submatrices
C             in rows and columns ILO to IHI, but applies the
C             transformations to all the rows and columns of the
C             matrices A and B, if WANTT = .TRUE..
C             1 <= ILO <= max(1,N); min(ILO,N) <= IHI <= N.
C
C     ILOQ    (input) INTEGER
C     IHIQ    (input) INTEGER
C             Specify the rows of Q and Z to which transformations
C             must be applied if WANTQ = .TRUE. and WANTZ = .TRUE.,
C             respectively.
C             1 <= ILOQ <= ILO; IHI <= IHIQ <= N.
C
C     POS     (input) INTEGER
C             The position of the zero element on the diagonal of B.
C             ILO <= POS <= IHI.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the upper Hessenberg matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the updated matrix A where A(POS,POS-1) = 0, if POS > ILO,
C             and A(POS+1,POS) = 0, if POS < IHI.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C             On entry, the leading N-by-N part of this array must
C             contain an upper triangular matrix B with B(POS,POS) = 0.
C             On exit, the leading N-by-N part of this array contains
C             the updated upper triangular matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C             On entry, if WANTQ = .TRUE., then the leading N-by-N part
C             of this array must contain the current matrix Q of
C             transformations accumulated by MB03XP.
C             On exit, if WANTQ = .TRUE., then the leading N-by-N part
C             of this array contains the matrix Q updated in the
C             submatrix Q(ILOQ:IHIQ,ILO:IHI).
C             If WANTQ = .FALSE., Q is not referenced.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.  LDQ >= 1.
C             If WANTQ = .TRUE., LDQ >= MAX(1,N).
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             On entry, if WANTZ = .TRUE., then the leading N-by-N part
C             of this array must contain the current matrix Z of
C             transformations accumulated by MB03XP.
C             On exit, if WANTZ = .TRUE., then the leading N-by-N part
C             of this array contains the matrix Z updated in the
C             submatrix Z(ILOQ:IHIQ,ILO:IHI).
C             If WANTZ = .FALSE., Z is not referenced.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.  LDZ >= 1.
C             If WANTZ = .TRUE., LDZ >= MAX(1,N).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The method is illustrated by Wilkinson diagrams for N = 5,
C     POS = 3:
C
C           [ x x x x x ]       [ x x x x x ]
C           [ x x x x x ]       [ o x x x x ]
C       A = [ o x x x x ],  B = [ o o o x x ].
C           [ o o x x x ]       [ o o o x x ]
C           [ o o o x x ]       [ o o o o x ]
C
C     First, a QR factorization is applied to A(1:3,1:3) and the
C     resulting nonzero in the updated matrix B is immediately
C     annihilated by a Givens rotation acting on columns 1 and 2:
C
C           [ x x x x x ]       [ x x x x x ]
C           [ x x x x x ]       [ o x x x x ]
C       A = [ o o x x x ],  B = [ o o o x x ].
C           [ o o x x x ]       [ o o o x x ]
C           [ o o o x x ]       [ o o o o x ]
C
C     Secondly, an RQ factorization is applied to A(4:5,4:5) and the
C     resulting nonzero in the updated matrix B is immediately
C     annihilated by a Givens rotation acting on rows 4 and 5:
C
C           [ x x x x x ]       [ x x x x x ]
C           [ x x x x x ]       [ o x x x x ]
C       A = [ o o x x x ],  B = [ o o o x x ].
C           [ o o o x x ]       [ o o o x x ]
C           [ o o o x x ]       [ o o o o x ]
C
C     REFERENCES
C
C     [1] Bojanczyk, A.W., Golub, G.H., and Van Dooren, P.
C         The periodic Schur decomposition: Algorithms and applications.
C         Proc. of the SPIE Conference (F.T. Luk, Ed.), 1770, pp. 31-42,
C         1992.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires O(N**2) floating point operations and is
C     backward stable.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, June 2008 (SLICOT version of the HAPACK routine DLADFB).
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
C     .. Scalar Arguments ..
      LOGICAL            WANTQ, WANTT, WANTZ
      INTEGER            IHI, IHIQ, ILO, ILOQ, INFO, LDA, LDB, LDQ, LDZ,
     $                   N, POS
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*)
C     .. Local Scalars ..
      INTEGER            I1, I2, J, NQ
      DOUBLE PRECISION   CS, SN, TEMP
C     .. External Subroutines ..
      EXTERNAL           DLARTG, DROT, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
C
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      INFO = 0
      NQ = IHIQ - ILOQ + 1
      IF ( N.LT.0 ) THEN
         INFO = -4
      ELSE IF ( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF ( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -6
      ELSE IF ( ILOQ.LT.1 .OR. ILOQ.GT.ILO ) THEN
         INFO = -7
      ELSE IF ( IHIQ.LT.IHI .OR. IHIQ.GT.N ) THEN
         INFO = -8
      ELSE IF ( POS.LT.ILO .OR. POS.GT.IHI ) THEN
         INFO = -9
      ELSE IF ( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -11
      ELSE IF ( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -13
      ELSE IF ( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.N ) THEN
         INFO = -15
      ELSE IF ( LDZ.LT.1 .OR. WANTZ .AND. LDZ.LT.N ) THEN
         INFO = -17
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB03YA', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 )
     $   RETURN
C
      IF ( WANTT ) THEN
         I1 = 1
         I2 = N
      ELSE
         I1 = ILO
         I2 = IHI
      END IF
C
C     Apply a zero-shifted QR step.
C
      DO 10  J = ILO, POS-1
         TEMP = A(J,J)
         CALL DLARTG( TEMP, A(J+1,J), CS, SN, A(J,J) )
         A(J+1,J) = ZERO
         CALL DROT( I2-J, A(J,J+1), LDA, A(J+1,J+1), LDA, CS, SN )
         CALL DROT( MIN(J,POS-2)-I1+2, B(I1,J), 1, B(I1,J+1), 1, CS,
     $              SN )
         IF ( WANTQ )
     $      CALL DROT( NQ, Q(ILOQ,J), 1, Q(ILOQ,J+1), 1, CS, SN )
   10 CONTINUE
      DO 20  J = ILO, POS-2
         TEMP = B(J,J)
         CALL DLARTG( TEMP, B(J+1,J), CS, SN, B(J,J) )
         B(J+1,J) = ZERO
         CALL DROT( I2-J, B(J,J+1), LDB, B(J+1,J+1), LDB, CS, SN )
         CALL DROT( J-I1+2, A(I1,J), 1, A(I1,J+1), 1, CS, SN )
         IF ( WANTZ )
     $      CALL DROT( NQ, Z(ILOQ,J), 1, Z(ILOQ,J+1), 1, CS, SN )
   20 CONTINUE
C
C     Apply a zero-shifted RQ step.
C
      DO 30  J = IHI, POS+1, -1
         TEMP = A(J,J)
         CALL DLARTG( TEMP, A(J,J-1), CS, SN, A(J,J) )
         A(J,J-1) = ZERO
         SN = -SN
         CALL DROT( J-I1, A(I1,J-1), 1, A(I1,J), 1, CS, SN )
         CALL DROT( I2 - MAX( J-1,POS+1 ) + 1, B(J-1,MAX( J-1,POS+1 )),
     $              LDB, B(J,MAX(J-1,POS+1)), LDB, CS, SN )
         IF ( WANTZ )
     $      CALL DROT( NQ, Z(ILOQ,J-1), 1, Z(ILOQ,J), 1, CS, SN )
   30 CONTINUE
      DO 40  J = IHI, POS+2, -1
         TEMP = B(J,J)
         CALL DLARTG( TEMP, B(J,J-1), CS, SN, B(J,J) )
         B(J,J-1) = ZERO
         SN = -SN
         CALL DROT( J-I1, B(I1,J-1), 1, B(I1,J), 1, CS, SN )
         CALL DROT( I2-J+2, A(J-1,J-1), LDA, A(J,J-1), LDA, CS, SN )
         IF ( WANTQ )
     $      CALL DROT( NQ, Q(ILOQ,J-1), 1, Q(ILOQ,J), 1, CS, SN )
   40 CONTINUE
      RETURN
C *** Last line of MB03YA ***
      END