File: MB03YD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (540 lines) | stat: -rw-r--r-- 18,681 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
      SUBROUTINE MB03YD( WANTT, WANTQ, WANTZ, N, ILO, IHI, ILOQ, IHIQ,
     $                   A, LDA, B, LDB, Q, LDQ, Z, LDZ, ALPHAR, ALPHAI,
     $                   BETA, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To deal with small subtasks of the product eigenvalue problem.
C
C     MB03YD is an auxiliary routine called by SLICOT Library routine
C     MB03XP.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     WANTT   LOGICAL
C             Indicates whether the user wishes to compute the full
C             Schur form or the eigenvalues only, as follows:
C             = .TRUE. :  Compute the full Schur form;
C             = .FALSE.:  compute the eigenvalues only.
C
C     WANTQ   LOGICAL
C             Indicates whether or not the user wishes to accumulate
C             the matrix Q as follows:
C             = .TRUE. :  The matrix Q is updated;
C             = .FALSE.:  the matrix Q is not required.
C
C     WANTZ   LOGICAL
C             Indicates whether or not the user wishes to accumulate
C             the matrix Z as follows:
C             = .TRUE. :  The matrix Z is updated;
C             = .FALSE.:  the matrix Z is not required.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A and B. N >= 0.
C
C     ILO     (input) INTEGER
C     IHI     (input) INTEGER
C             It is assumed that the matrices A and B are already
C             (quasi) upper triangular in rows and columns 1:ILO-1 and
C             IHI+1:N. The routine works primarily with the submatrices
C             in rows and columns ILO to IHI, but applies the
C             transformations to all the rows and columns of the
C             matrices A and B, if WANTT = .TRUE..
C             1 <= ILO <= max(1,N); min(ILO,N) <= IHI <= N.
C
C     ILOQ    (input) INTEGER
C     IHIQ    (input) INTEGER
C             Specify the rows of Q and Z to which transformations
C             must be applied if WANTQ = .TRUE. and WANTZ = .TRUE.,
C             respectively.
C             1 <= ILOQ <= ILO; IHI <= IHIQ <= N.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the upper Hessenberg matrix A.
C             On exit, if WANTT = .TRUE., the leading N-by-N part of
C             this array is upper quasi-triangular in rows and columns
C             ILO:IHI.
C             If WANTT = .FALSE., the diagonal elements and 2-by-2
C             diagonal blocks of A will be correct, but the remaining
C             parts of A are unspecified on exit.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C             On entry, the leading N-by-N part of this array must
C             contain the upper triangular matrix B.
C             On exit, if WANTT = .TRUE., the leading N-by-N part of
C             this array contains the transformed upper triangular
C             matrix. 2-by-2 blocks in B corresponding to 2-by-2 blocks
C             in A will be reduced to positive diagonal form. (I.e., if
C             A(j+1,j) is non-zero, then B(j+1,j)=B(j,j+1)=0 and B(j,j)
C             and B(j+1,j+1) will be positive.)
C             If WANTT = .FALSE., the elements corresponding to diagonal
C             elements and 2-by-2 diagonal blocks in A will be correct,
C             but the remaining parts of B are unspecified on exit.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C             On entry, if WANTQ = .TRUE., then the leading N-by-N part
C             of this array must contain the current matrix Q of
C             transformations accumulated by MB03XP.
C             On exit, if WANTQ = .TRUE., then the leading N-by-N part
C             of this array contains the matrix Q updated in the
C             submatrix Q(ILOQ:IHIQ,ILO:IHI).
C             If WANTQ = .FALSE., Q is not referenced.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.  LDQ >= 1.
C             If WANTQ = .TRUE., LDQ >= MAX(1,N).
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             On entry, if WANTZ = .TRUE., then the leading N-by-N part
C             of this array must contain the current matrix Z of
C             transformations accumulated by MB03XP.
C             On exit, if WANTZ = .TRUE., then the leading N-by-N part
C             of this array contains the matrix Z updated in the
C             submatrix Z(ILOQ:IHIQ,ILO:IHI).
C             If WANTZ = .FALSE., Z is not referenced.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.  LDZ >= 1.
C             If WANTZ = .TRUE., LDZ >= MAX(1,N).
C
C     ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
C     ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
C     BETA    (output) DOUBLE PRECISION array, dimension (N)
C             The i-th (ILO <= i <= IHI) computed eigenvalue is given
C             by BETA(I) * ( ALPHAR(I) + sqrt(-1)*ALPHAI(I) ). If two
C             eigenvalues are computed as a complex conjugate pair,
C             they are stored in consecutive elements of ALPHAR, ALPHAI
C             and BETA. If WANTT = .TRUE., the eigenvalues are stored in
C             the same order as on the diagonals of the Schur forms of
C             A and B.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if  INFO = -19,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= MAX(1,N).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, then MB03YD failed to compute the Schur
C                   form in a total of 30*(IHI-ILO+1) iterations;
C                   elements i+1:n of ALPHAR, ALPHAI and BETA contain
C                   successfully computed eigenvalues.
C
C     METHOD
C
C     The implemented algorithm is a double-shift version of the
C     periodic QR algorithm described in [1,3] with some minor
C     modifications [2]. The eigenvalues are computed via an implicit
C     complex single shift algorithm.
C
C     REFERENCES
C
C     [1] Bojanczyk, A.W., Golub, G.H., and Van Dooren, P.
C         The periodic Schur decomposition: Algorithms and applications.
C         Proc. of the SPIE Conference (F.T. Luk, Ed.), 1770, pp. 31-42,
C         1992.
C
C     [2] Kressner, D.
C         An efficient and reliable implementation of the periodic QZ
C         algorithm. Proc. of the IFAC Workshop on Periodic Control
C         Systems, pp. 187-192, 2001.
C
C     [3] Van Loan, C.
C         Generalized Singular Values with Algorithms and Applications.
C         Ph. D. Thesis, University of Michigan, 1973.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires O(N**3) floating point operations and is
C     backward stable.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, June 2008 (SLICOT version of the HAPACK routine DLAPQR).
C
C     KEYWORDS
C
C     Eigenvalue, eigenvalue decomposition, Hessenberg form, orthogonal
C     transformation, (periodic) Schur form
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     .. Scalar Arguments ..
      LOGICAL            WANTQ, WANTT, WANTZ
      INTEGER            IHI, IHIQ, ILO, ILOQ, INFO, LDA, LDB, LDQ,
     $                   LDWORK, LDZ, N
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), ALPHAI(*), ALPHAR(*), B(LDB,*),
     $                   BETA(*), DWORK(*), Q(LDQ,*), Z(LDZ,*)
C     .. Local Scalars ..
      INTEGER            I, I1, I2, ITN, ITS, K, KK, L, NH, NQ, NR
      DOUBLE PRECISION   ALPHA, BETAX, CS1, CS2, CS3, DELTA, GAMMA,
     $                   OVFL, SMLNUM, SN1, SN2, SN3, TAUV, TAUW,
     $                   TEMP, TST, ULP, UNFL
C     .. Local Arrays ..
      INTEGER            ISEED(4)
      DOUBLE PRECISION   V(3), W(3)
C     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANHS
      EXTERNAL           DLAMCH, DLANHS
C     .. External Subroutines ..
      EXTERNAL           DCOPY, DLABAD, DLARFG, DLARFX, DLARNV, DLARTG,
     $                   DROT, MB03YA, MB03YT, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, MAX, MIN
C
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      INFO = 0
      NH = IHI - ILO + 1
      NQ = IHIQ - ILOQ + 1
      IF ( N.LT.0 ) THEN
         INFO = -4
      ELSE IF ( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF ( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
         INFO = -6
      ELSE IF ( ILOQ.LT.1 .OR. ILOQ.GT.ILO ) THEN
         INFO = -7
      ELSE IF ( IHIQ.LT.IHI .OR. IHIQ.GT.N ) THEN
         INFO = -8
      ELSE IF ( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF ( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF ( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.N ) THEN
         INFO = -14
      ELSE IF ( LDZ.LT.1 .OR. WANTZ .AND. LDZ.LT.N ) THEN
         INFO = -16
      ELSE IF ( LDWORK.LT.MAX( 1, N ) ) THEN
         DWORK(1) = DBLE( MAX( 1, N ) )
         INFO = -21
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB03YD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 )
     $   RETURN
C
C     Set machine-dependent constants for the stopping criterion.
C
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      SMLNUM = UNFL*( NH / ULP )
C
C     I1 and I2 are the indices of the first rows and last columns of
C     A and B to which transformations must be applied.
C
      I1 = 1
      I2 = N
      ISEED(1) = 1
      ISEED(2) = 0
      ISEED(3) = 0
      ISEED(4) = 1
C
C     ITN is the maximal number of QR iterations.
C
      ITN = 30*NH
C
C     Main loop. Eigenvalues I+1:IHI have converged. Either L = ILO
C     or A(L,L-1) is negligible.
C
      I = IHI
   10 CONTINUE
      L = ILO
      IF ( I.LT.ILO )
     $   GO TO 120
C
C     Perform periodic QR iteration on rows and columns ILO to I of A
C     and B until a submatrix of order 1 or 2 splits off at the bottom.
C
      DO 70  ITS = 0, ITN
C
C        Look for deflations in A.
C
         DO 20  K = I, L + 1, -1
            TST = ABS( A(K-1,K-1) ) + ABS( A(K,K) )
            IF ( TST.EQ.ZERO )
     $         TST = DLANHS( '1', I-L+1, A(L,L), LDA, DWORK )
            IF ( ABS( A(K,K-1) ).LE.MAX( ULP*TST, SMLNUM ) )
     $         GO TO 30
   20    CONTINUE
   30    CONTINUE
C
C        Look for deflation in B if problem size is greater than 1.
C
         IF ( I-K.GE.1 ) THEN
            DO 40  KK = I, K, -1
               IF ( KK.EQ.I ) THEN
                  TST = ABS( B(KK-1,KK) )
               ELSE IF ( KK.EQ.K ) THEN
                  TST = ABS( B(KK,KK+1) )
               ELSE
                  TST = ABS( B(KK-1,KK) ) + ABS( B(KK,KK+1) )
               END IF
               IF ( TST.EQ.ZERO )
     $            TST = DLANHS( '1', I-K+1, B(K,K), LDB, DWORK )
               IF ( ABS( B(KK,KK) ).LE.MAX( ULP*TST, SMLNUM ) )
     $            GO TO 50
   40       CONTINUE
         ELSE
            KK = K-1
         END IF
   50    CONTINUE
         IF ( KK.GE.K ) THEN
C
C           B has an element close to zero at position (KK,KK).
C
            B(KK,KK) = ZERO
            CALL MB03YA( WANTT, WANTQ, WANTZ, N, K, I, ILOQ, IHIQ, KK,
     $                   A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO )
            K = KK+1
         END IF
         L = K
         IF( L.GT.ILO ) THEN
C
C           A(L,L-1) is negligible.
C
            A(L,L-1) = ZERO
         END IF
C
C        Exit from loop if a submatrix of order 1 or 2 has split off.
C
         IF ( L.GE.I-1 )
     $      GO TO 80
C
C        The active submatrices are now in rows and columns L:I.
C
         IF ( .NOT.WANTT ) THEN
            I1 = L
            I2 = I
         END IF
         IF ( ITS.EQ.10.OR.ITS.EQ.20 ) THEN
C
C           Exceptional shift. The first column of the shift polynomial
C           is a pseudo-random vector.
C
            CALL DLARNV( 3, ISEED, 3, V )
         ELSE
C
C           The implicit double shift is constructed via a partial
C           product QR factorization [2].
C
            CALL DLARTG( B(L,L), B(I,I), CS2, SN2, TEMP )
            CALL DLARTG( TEMP, B(I-1,I), CS1, SN1, ALPHA )
C
            ALPHA = A(L,L)*CS2 - A(I,I)*SN2
            BETAX = CS1*( CS2*A(L+1,L) )
            GAMMA = CS1*( SN2*A(I-1,I) ) + SN1*A(I-1,I-1)
            ALPHA = ALPHA*CS1 - A(I,I-1)*SN1
            CALL DLARTG( ALPHA, BETAX, CS1, SN1, TEMP )
C
            CALL DLARTG( TEMP, GAMMA, CS2, SN2, ALPHA )
            ALPHA = CS2
            GAMMA = ( A(I-1,I-1)*CS1 )*CS2 + A(I,I-1)*SN2
            DELTA = ( A(I-1,I-1)*SN1 )*CS2
            CALL DLARTG( GAMMA, DELTA, CS3, SN3, TEMP )
            CALL DLARTG( ALPHA, TEMP, CS2, SN2, ALPHA )
C
            ALPHA = ( B(L,L)*CS1 + B(L,L+1)*SN1 )*CS2
            BETAX = ( B(L+1,L+1)*SN1 )*CS2
            GAMMA = B(I-1,I-1)*SN2
            CALL DLARTG( ALPHA, BETAX, CS1, SN1, TEMP )
            CALL DLARTG( TEMP, GAMMA, CS2, SN2, ALPHA )
C
            ALPHA = CS1*A(L,L) + SN1*A(L,L+1)
            BETAX = CS1*A(L+1,L) + SN1*A(L+1,L+1)
            GAMMA = SN1*A(L+2,L+1)
C
            V(1) = CS2*ALPHA - SN2*CS3
            V(2) = CS2*BETAX - SN2*SN3
            V(3) = GAMMA*CS2
         END IF
C
C        Double-shift QR step
C
         DO 60  K = L, I-1
C
            NR = MIN( 3,I-K+1 )
            IF ( K.GT.L )
     $         CALL DCOPY( NR, A(K,K-1), 1, V, 1 )
            CALL DLARFG( NR, V(1), V(2), 1, TAUV )
            IF ( K.GT.L ) THEN
               A(K,K-1) = V(1)
               A(K+1,K-1) = ZERO
               IF ( K.LT.I-1 )
     $            A(K+2,K-1) = ZERO
            END IF
C
C           Apply reflector V from the right to B in rows I1:min(K+2,I).
C
            V(1) = ONE
            CALL DLARFX( 'Right', MIN(K+2,I)-I1+1, NR, V, TAUV, B(I1,K),
     $                   LDB, DWORK )
C
C           Annihilate the introduced nonzeros in the K-th column.
C
            CALL DCOPY( NR, B(K,K), 1, W, 1 )
            CALL DLARFG( NR, W(1), W(2), 1, TAUW )
            B(K,K) = W(1)
            B(K+1,K) = ZERO
            IF ( K.LT.I-1 )
     $         B(K+2,K) = ZERO
C
C           Apply reflector W from the left to transform the rows of the
C           matrix B in columns K+1:I2.
C
            W(1) = ONE
            CALL DLARFX( 'Left', NR, I2-K, W, TAUW, B(K,K+1), LDB,
     $                   DWORK )
C
C           Apply reflector V from the left to transform the rows of the
C           matrix A in columns K:I2.
C
            CALL DLARFX( 'Left', NR, I2-K+1, V, TAUV, A(K,K), LDA,
     $                   DWORK )
C
C           Apply reflector W from the right to transform the columns of
C           the matrix A in rows I1:min(K+3,I).
C
            CALL DLARFX( 'Right', MIN(K+3,I)-I1+1, NR, W, TAUW, A(I1,K),
     $                   LDA, DWORK )
C
C           Accumulate transformations in the matrices Q and Z.
C
            IF ( WANTQ )
     $         CALL DLARFX( 'Right', NQ, NR, V, TAUV, Q(ILOQ,K), LDQ,
     $                      DWORK )
            IF ( WANTZ )
     $         CALL DLARFX( 'Right', NQ, NR, W, TAUW, Z(ILOQ,K), LDZ,
     $                      DWORK )
   60    CONTINUE
   70 CONTINUE
C
C     Failure to converge.
C
      INFO = I
      RETURN
C
   80 CONTINUE
C
C     Compute 1-by-1 or 2-by-2 subproblem.
C
      IF ( L.EQ.I ) THEN
C
C        Standardize B, set ALPHAR, ALPHAI and BETA.
C
         IF ( B(I,I).LT.ZERO ) THEN
            IF ( WANTT ) THEN
               DO 90  K = I1, I
                  B(K,I) = -B(K,I)
   90          CONTINUE
               DO 100  K = I, I2
                  A(I,K) = -A(I,K)
  100          CONTINUE
            ELSE
               B(I,I) = -B(I,I)
               A(I,I) = -A(I,I)
            END IF
            IF ( WANTQ ) THEN
               DO 110  K = ILOQ, IHIQ
                  Q(K,I) = -Q(K,I)
  110          CONTINUE
            END IF
         END IF
         ALPHAR(I) = A(I,I)
         ALPHAI(I) = ZERO
         BETA(I) = B(I,I)
      ELSE IF( L.EQ.I-1 ) THEN
C
C        A double block has converged.
C        Compute eigenvalues and standardize double block.
C
         CALL MB03YT( A(I-1,I-1), LDA, B(I-1,I-1), LDB, ALPHAR(I-1),
     $                ALPHAI(I-1), BETA(I-1), CS1, SN1, CS2, SN2 )
C
C        Apply transformation to rest of A and B.
C
         IF ( I2.GT.I )
     $      CALL DROT( I2-I, A(I-1,I+1), LDA, A(I,I+1), LDA, CS1, SN1 )
         CALL DROT( I-I1-1, A(I1,I-1), 1, A(I1,I), 1, CS2, SN2 )
         IF ( I2.GT.I )
     $      CALL DROT( I2-I, B(I-1,I+1), LDB, B(I,I+1), LDB, CS2, SN2 )
         CALL DROT( I-I1-1, B(I1,I-1), 1, B(I1,I), 1, CS1, SN1 )
C
C        Apply transformation to rest of Q and Z if desired.
C
         IF ( WANTQ )
     $      CALL DROT( NQ, Q(ILOQ,I-1), 1, Q(ILOQ,I), 1, CS1, SN1 )
         IF ( WANTZ )
     $      CALL DROT( NQ, Z(ILOQ,I-1), 1, Z(ILOQ,I), 1, CS2, SN2 )
      END IF
C
C     Decrement number of remaining iterations, and return to start of
C     the main loop with new value of I.
C
      ITN = ITN - ITS
      I = L - 1
      GO TO 10
C
  120 CONTINUE
      DWORK(1) = DBLE( MAX( 1, N ) )
      RETURN
C *** Last line of MB03YD ***
      END