1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
SUBROUTINE MB03YD( WANTT, WANTQ, WANTZ, N, ILO, IHI, ILOQ, IHIQ,
$ A, LDA, B, LDB, Q, LDQ, Z, LDZ, ALPHAR, ALPHAI,
$ BETA, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To deal with small subtasks of the product eigenvalue problem.
C
C MB03YD is an auxiliary routine called by SLICOT Library routine
C MB03XP.
C
C ARGUMENTS
C
C Mode Parameters
C
C WANTT LOGICAL
C Indicates whether the user wishes to compute the full
C Schur form or the eigenvalues only, as follows:
C = .TRUE. : Compute the full Schur form;
C = .FALSE.: compute the eigenvalues only.
C
C WANTQ LOGICAL
C Indicates whether or not the user wishes to accumulate
C the matrix Q as follows:
C = .TRUE. : The matrix Q is updated;
C = .FALSE.: the matrix Q is not required.
C
C WANTZ LOGICAL
C Indicates whether or not the user wishes to accumulate
C the matrix Z as follows:
C = .TRUE. : The matrix Z is updated;
C = .FALSE.: the matrix Z is not required.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A and B. N >= 0.
C
C ILO (input) INTEGER
C IHI (input) INTEGER
C It is assumed that the matrices A and B are already
C (quasi) upper triangular in rows and columns 1:ILO-1 and
C IHI+1:N. The routine works primarily with the submatrices
C in rows and columns ILO to IHI, but applies the
C transformations to all the rows and columns of the
C matrices A and B, if WANTT = .TRUE..
C 1 <= ILO <= max(1,N); min(ILO,N) <= IHI <= N.
C
C ILOQ (input) INTEGER
C IHIQ (input) INTEGER
C Specify the rows of Q and Z to which transformations
C must be applied if WANTQ = .TRUE. and WANTZ = .TRUE.,
C respectively.
C 1 <= ILOQ <= ILO; IHI <= IHIQ <= N.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the upper Hessenberg matrix A.
C On exit, if WANTT = .TRUE., the leading N-by-N part of
C this array is upper quasi-triangular in rows and columns
C ILO:IHI.
C If WANTT = .FALSE., the diagonal elements and 2-by-2
C diagonal blocks of A will be correct, but the remaining
C parts of A are unspecified on exit.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C On entry, the leading N-by-N part of this array must
C contain the upper triangular matrix B.
C On exit, if WANTT = .TRUE., the leading N-by-N part of
C this array contains the transformed upper triangular
C matrix. 2-by-2 blocks in B corresponding to 2-by-2 blocks
C in A will be reduced to positive diagonal form. (I.e., if
C A(j+1,j) is non-zero, then B(j+1,j)=B(j,j+1)=0 and B(j,j)
C and B(j+1,j+1) will be positive.)
C If WANTT = .FALSE., the elements corresponding to diagonal
C elements and 2-by-2 diagonal blocks in A will be correct,
C but the remaining parts of B are unspecified on exit.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= MAX(1,N).
C
C Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C On entry, if WANTQ = .TRUE., then the leading N-by-N part
C of this array must contain the current matrix Q of
C transformations accumulated by MB03XP.
C On exit, if WANTQ = .TRUE., then the leading N-by-N part
C of this array contains the matrix Q updated in the
C submatrix Q(ILOQ:IHIQ,ILO:IHI).
C If WANTQ = .FALSE., Q is not referenced.
C
C LDQ INTEGER
C The leading dimension of the array Q. LDQ >= 1.
C If WANTQ = .TRUE., LDQ >= MAX(1,N).
C
C Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C On entry, if WANTZ = .TRUE., then the leading N-by-N part
C of this array must contain the current matrix Z of
C transformations accumulated by MB03XP.
C On exit, if WANTZ = .TRUE., then the leading N-by-N part
C of this array contains the matrix Z updated in the
C submatrix Z(ILOQ:IHIQ,ILO:IHI).
C If WANTZ = .FALSE., Z is not referenced.
C
C LDZ INTEGER
C The leading dimension of the array Z. LDZ >= 1.
C If WANTZ = .TRUE., LDZ >= MAX(1,N).
C
C ALPHAR (output) DOUBLE PRECISION array, dimension (N)
C ALPHAI (output) DOUBLE PRECISION array, dimension (N)
C BETA (output) DOUBLE PRECISION array, dimension (N)
C The i-th (ILO <= i <= IHI) computed eigenvalue is given
C by BETA(I) * ( ALPHAR(I) + sqrt(-1)*ALPHAI(I) ). If two
C eigenvalues are computed as a complex conjugate pair,
C they are stored in consecutive elements of ALPHAR, ALPHAI
C and BETA. If WANTT = .TRUE., the eigenvalues are stored in
C the same order as on the diagonals of the Schur forms of
C A and B.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = -19, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= MAX(1,N).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, then MB03YD failed to compute the Schur
C form in a total of 30*(IHI-ILO+1) iterations;
C elements i+1:n of ALPHAR, ALPHAI and BETA contain
C successfully computed eigenvalues.
C
C METHOD
C
C The implemented algorithm is a double-shift version of the
C periodic QR algorithm described in [1,3] with some minor
C modifications [2]. The eigenvalues are computed via an implicit
C complex single shift algorithm.
C
C REFERENCES
C
C [1] Bojanczyk, A.W., Golub, G.H., and Van Dooren, P.
C The periodic Schur decomposition: Algorithms and applications.
C Proc. of the SPIE Conference (F.T. Luk, Ed.), 1770, pp. 31-42,
C 1992.
C
C [2] Kressner, D.
C An efficient and reliable implementation of the periodic QZ
C algorithm. Proc. of the IFAC Workshop on Periodic Control
C Systems, pp. 187-192, 2001.
C
C [3] Van Loan, C.
C Generalized Singular Values with Algorithms and Applications.
C Ph. D. Thesis, University of Michigan, 1973.
C
C NUMERICAL ASPECTS
C
C The algorithm requires O(N**3) floating point operations and is
C backward stable.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, June 2008 (SLICOT version of the HAPACK routine DLAPQR).
C
C KEYWORDS
C
C Eigenvalue, eigenvalue decomposition, Hessenberg form, orthogonal
C transformation, (periodic) Schur form
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C .. Scalar Arguments ..
LOGICAL WANTQ, WANTT, WANTZ
INTEGER IHI, IHIQ, ILO, ILOQ, INFO, LDA, LDB, LDQ,
$ LDWORK, LDZ, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), ALPHAI(*), ALPHAR(*), B(LDB,*),
$ BETA(*), DWORK(*), Q(LDQ,*), Z(LDZ,*)
C .. Local Scalars ..
INTEGER I, I1, I2, ITN, ITS, K, KK, L, NH, NQ, NR
DOUBLE PRECISION ALPHA, BETAX, CS1, CS2, CS3, DELTA, GAMMA,
$ OVFL, SMLNUM, SN1, SN2, SN3, TAUV, TAUW,
$ TEMP, TST, ULP, UNFL
C .. Local Arrays ..
INTEGER ISEED(4)
DOUBLE PRECISION V(3), W(3)
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANHS
EXTERNAL DLAMCH, DLANHS
C .. External Subroutines ..
EXTERNAL DCOPY, DLABAD, DLARFG, DLARFX, DLARNV, DLARTG,
$ DROT, MB03YA, MB03YT, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
C
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
INFO = 0
NH = IHI - ILO + 1
NQ = IHIQ - ILOQ + 1
IF ( N.LT.0 ) THEN
INFO = -4
ELSE IF ( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF ( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
INFO = -6
ELSE IF ( ILOQ.LT.1 .OR. ILOQ.GT.ILO ) THEN
INFO = -7
ELSE IF ( IHIQ.LT.IHI .OR. IHIQ.GT.N ) THEN
INFO = -8
ELSE IF ( LDA.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF ( LDB.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF ( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.N ) THEN
INFO = -14
ELSE IF ( LDZ.LT.1 .OR. WANTZ .AND. LDZ.LT.N ) THEN
INFO = -16
ELSE IF ( LDWORK.LT.MAX( 1, N ) ) THEN
DWORK(1) = DBLE( MAX( 1, N ) )
INFO = -21
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03YD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 )
$ RETURN
C
C Set machine-dependent constants for the stopping criterion.
C
UNFL = DLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Precision' )
SMLNUM = UNFL*( NH / ULP )
C
C I1 and I2 are the indices of the first rows and last columns of
C A and B to which transformations must be applied.
C
I1 = 1
I2 = N
ISEED(1) = 1
ISEED(2) = 0
ISEED(3) = 0
ISEED(4) = 1
C
C ITN is the maximal number of QR iterations.
C
ITN = 30*NH
C
C Main loop. Eigenvalues I+1:IHI have converged. Either L = ILO
C or A(L,L-1) is negligible.
C
I = IHI
10 CONTINUE
L = ILO
IF ( I.LT.ILO )
$ GO TO 120
C
C Perform periodic QR iteration on rows and columns ILO to I of A
C and B until a submatrix of order 1 or 2 splits off at the bottom.
C
DO 70 ITS = 0, ITN
C
C Look for deflations in A.
C
DO 20 K = I, L + 1, -1
TST = ABS( A(K-1,K-1) ) + ABS( A(K,K) )
IF ( TST.EQ.ZERO )
$ TST = DLANHS( '1', I-L+1, A(L,L), LDA, DWORK )
IF ( ABS( A(K,K-1) ).LE.MAX( ULP*TST, SMLNUM ) )
$ GO TO 30
20 CONTINUE
30 CONTINUE
C
C Look for deflation in B if problem size is greater than 1.
C
IF ( I-K.GE.1 ) THEN
DO 40 KK = I, K, -1
IF ( KK.EQ.I ) THEN
TST = ABS( B(KK-1,KK) )
ELSE IF ( KK.EQ.K ) THEN
TST = ABS( B(KK,KK+1) )
ELSE
TST = ABS( B(KK-1,KK) ) + ABS( B(KK,KK+1) )
END IF
IF ( TST.EQ.ZERO )
$ TST = DLANHS( '1', I-K+1, B(K,K), LDB, DWORK )
IF ( ABS( B(KK,KK) ).LE.MAX( ULP*TST, SMLNUM ) )
$ GO TO 50
40 CONTINUE
ELSE
KK = K-1
END IF
50 CONTINUE
IF ( KK.GE.K ) THEN
C
C B has an element close to zero at position (KK,KK).
C
B(KK,KK) = ZERO
CALL MB03YA( WANTT, WANTQ, WANTZ, N, K, I, ILOQ, IHIQ, KK,
$ A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO )
K = KK+1
END IF
L = K
IF( L.GT.ILO ) THEN
C
C A(L,L-1) is negligible.
C
A(L,L-1) = ZERO
END IF
C
C Exit from loop if a submatrix of order 1 or 2 has split off.
C
IF ( L.GE.I-1 )
$ GO TO 80
C
C The active submatrices are now in rows and columns L:I.
C
IF ( .NOT.WANTT ) THEN
I1 = L
I2 = I
END IF
IF ( ITS.EQ.10.OR.ITS.EQ.20 ) THEN
C
C Exceptional shift. The first column of the shift polynomial
C is a pseudo-random vector.
C
CALL DLARNV( 3, ISEED, 3, V )
ELSE
C
C The implicit double shift is constructed via a partial
C product QR factorization [2].
C
CALL DLARTG( B(L,L), B(I,I), CS2, SN2, TEMP )
CALL DLARTG( TEMP, B(I-1,I), CS1, SN1, ALPHA )
C
ALPHA = A(L,L)*CS2 - A(I,I)*SN2
BETAX = CS1*( CS2*A(L+1,L) )
GAMMA = CS1*( SN2*A(I-1,I) ) + SN1*A(I-1,I-1)
ALPHA = ALPHA*CS1 - A(I,I-1)*SN1
CALL DLARTG( ALPHA, BETAX, CS1, SN1, TEMP )
C
CALL DLARTG( TEMP, GAMMA, CS2, SN2, ALPHA )
ALPHA = CS2
GAMMA = ( A(I-1,I-1)*CS1 )*CS2 + A(I,I-1)*SN2
DELTA = ( A(I-1,I-1)*SN1 )*CS2
CALL DLARTG( GAMMA, DELTA, CS3, SN3, TEMP )
CALL DLARTG( ALPHA, TEMP, CS2, SN2, ALPHA )
C
ALPHA = ( B(L,L)*CS1 + B(L,L+1)*SN1 )*CS2
BETAX = ( B(L+1,L+1)*SN1 )*CS2
GAMMA = B(I-1,I-1)*SN2
CALL DLARTG( ALPHA, BETAX, CS1, SN1, TEMP )
CALL DLARTG( TEMP, GAMMA, CS2, SN2, ALPHA )
C
ALPHA = CS1*A(L,L) + SN1*A(L,L+1)
BETAX = CS1*A(L+1,L) + SN1*A(L+1,L+1)
GAMMA = SN1*A(L+2,L+1)
C
V(1) = CS2*ALPHA - SN2*CS3
V(2) = CS2*BETAX - SN2*SN3
V(3) = GAMMA*CS2
END IF
C
C Double-shift QR step
C
DO 60 K = L, I-1
C
NR = MIN( 3,I-K+1 )
IF ( K.GT.L )
$ CALL DCOPY( NR, A(K,K-1), 1, V, 1 )
CALL DLARFG( NR, V(1), V(2), 1, TAUV )
IF ( K.GT.L ) THEN
A(K,K-1) = V(1)
A(K+1,K-1) = ZERO
IF ( K.LT.I-1 )
$ A(K+2,K-1) = ZERO
END IF
C
C Apply reflector V from the right to B in rows I1:min(K+2,I).
C
V(1) = ONE
CALL DLARFX( 'Right', MIN(K+2,I)-I1+1, NR, V, TAUV, B(I1,K),
$ LDB, DWORK )
C
C Annihilate the introduced nonzeros in the K-th column.
C
CALL DCOPY( NR, B(K,K), 1, W, 1 )
CALL DLARFG( NR, W(1), W(2), 1, TAUW )
B(K,K) = W(1)
B(K+1,K) = ZERO
IF ( K.LT.I-1 )
$ B(K+2,K) = ZERO
C
C Apply reflector W from the left to transform the rows of the
C matrix B in columns K+1:I2.
C
W(1) = ONE
CALL DLARFX( 'Left', NR, I2-K, W, TAUW, B(K,K+1), LDB,
$ DWORK )
C
C Apply reflector V from the left to transform the rows of the
C matrix A in columns K:I2.
C
CALL DLARFX( 'Left', NR, I2-K+1, V, TAUV, A(K,K), LDA,
$ DWORK )
C
C Apply reflector W from the right to transform the columns of
C the matrix A in rows I1:min(K+3,I).
C
CALL DLARFX( 'Right', MIN(K+3,I)-I1+1, NR, W, TAUW, A(I1,K),
$ LDA, DWORK )
C
C Accumulate transformations in the matrices Q and Z.
C
IF ( WANTQ )
$ CALL DLARFX( 'Right', NQ, NR, V, TAUV, Q(ILOQ,K), LDQ,
$ DWORK )
IF ( WANTZ )
$ CALL DLARFX( 'Right', NQ, NR, W, TAUW, Z(ILOQ,K), LDZ,
$ DWORK )
60 CONTINUE
70 CONTINUE
C
C Failure to converge.
C
INFO = I
RETURN
C
80 CONTINUE
C
C Compute 1-by-1 or 2-by-2 subproblem.
C
IF ( L.EQ.I ) THEN
C
C Standardize B, set ALPHAR, ALPHAI and BETA.
C
IF ( B(I,I).LT.ZERO ) THEN
IF ( WANTT ) THEN
DO 90 K = I1, I
B(K,I) = -B(K,I)
90 CONTINUE
DO 100 K = I, I2
A(I,K) = -A(I,K)
100 CONTINUE
ELSE
B(I,I) = -B(I,I)
A(I,I) = -A(I,I)
END IF
IF ( WANTQ ) THEN
DO 110 K = ILOQ, IHIQ
Q(K,I) = -Q(K,I)
110 CONTINUE
END IF
END IF
ALPHAR(I) = A(I,I)
ALPHAI(I) = ZERO
BETA(I) = B(I,I)
ELSE IF( L.EQ.I-1 ) THEN
C
C A double block has converged.
C Compute eigenvalues and standardize double block.
C
CALL MB03YT( A(I-1,I-1), LDA, B(I-1,I-1), LDB, ALPHAR(I-1),
$ ALPHAI(I-1), BETA(I-1), CS1, SN1, CS2, SN2 )
C
C Apply transformation to rest of A and B.
C
IF ( I2.GT.I )
$ CALL DROT( I2-I, A(I-1,I+1), LDA, A(I,I+1), LDA, CS1, SN1 )
CALL DROT( I-I1-1, A(I1,I-1), 1, A(I1,I), 1, CS2, SN2 )
IF ( I2.GT.I )
$ CALL DROT( I2-I, B(I-1,I+1), LDB, B(I,I+1), LDB, CS2, SN2 )
CALL DROT( I-I1-1, B(I1,I-1), 1, B(I1,I), 1, CS1, SN1 )
C
C Apply transformation to rest of Q and Z if desired.
C
IF ( WANTQ )
$ CALL DROT( NQ, Q(ILOQ,I-1), 1, Q(ILOQ,I), 1, CS1, SN1 )
IF ( WANTZ )
$ CALL DROT( NQ, Z(ILOQ,I-1), 1, Z(ILOQ,I), 1, CS2, SN2 )
END IF
C
C Decrement number of remaining iterations, and return to start of
C the main loop with new value of I.
C
ITN = ITN - ITS
I = L - 1
GO TO 10
C
120 CONTINUE
DWORK(1) = DBLE( MAX( 1, N ) )
RETURN
C *** Last line of MB03YD ***
END
|