1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
SUBROUTINE MB03YT( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
$ CSR, SNR )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the periodic Schur factorization of a real 2-by-2
C matrix pair (A,B) where B is upper triangular. This routine
C computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
C SNR such that
C
C 1) if the pair (A,B) has two real eigenvalues, then
C
C [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
C [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
C
C [ b11 b12 ] := [ CSR SNR ] [ b11 b12 ] [ CSL -SNL ]
C [ 0 b22 ] [ -SNR CSR ] [ 0 b22 ] [ SNL CSL ],
C
C 2) if the pair (A,B) has a pair of complex conjugate eigenvalues,
C then
C
C [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
C [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
C
C [ b11 0 ] := [ CSR SNR ] [ b11 b12 ] [ CSL -SNL ]
C [ 0 b22 ] [ -SNR CSR ] [ 0 b22 ] [ SNL CSL ].
C
C This is a modified version of the LAPACK routine DLAGV2 for
C computing the real, generalized Schur decomposition of a
C two-by-two matrix pencil.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,2)
C On entry, the leading 2-by-2 part of this array must
C contain the matrix A.
C On exit, the leading 2-by-2 part of this array contains
C the matrix A of the pair in periodic Schur form.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= 2.
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,2)
C On entry, the leading 2-by-2 part of this array must
C contain the upper triangular matrix B.
C On exit, the leading 2-by-2 part of this array contains
C the matrix B of the pair in periodic Schur form.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= 2.
C
C ALPHAR (output) DOUBLE PRECISION array, dimension (2)
C ALPHAI (output) DOUBLE PRECISION array, dimension (2)
C BETA (output) DOUBLE PRECISION array, dimension (2)
C (ALPHAR(k)+i*ALPHAI(k))*BETA(k) are the eigenvalues of the
C pair (A,B), k=1,2, i = sqrt(-1). ALPHAI(1) >= 0.
C
C CSL (output) DOUBLE PRECISION
C The cosine of the first rotation matrix.
C
C SNL (output) DOUBLE PRECISION
C The sine of the first rotation matrix.
C
C CSR (output) DOUBLE PRECISION
C The cosine of the second rotation matrix.
C
C SNR (output) DOUBLE PRECISION
C The sine of the second rotation matrix.
C
C REFERENCES
C
C [1] Van Loan, C.
C Generalized Singular Values with Algorithms and Applications.
C Ph. D. Thesis, University of Michigan, 1973.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, June 2008 (SLICOT version of the HAPACK routine DLAPV2).
C V. Sima, July 2008, May 2009.
C
C KEYWORDS
C
C Eigenvalue, periodic Schur form
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER LDA, LDB
DOUBLE PRECISION CSL, CSR, SNL, SNR
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), ALPHAI(2), ALPHAR(2), B(LDB,*),
$ BETA(2)
C .. Local Scalars ..
DOUBLE PRECISION ANORM, BNORM, H1, H2, H3, QQ, R, RR, SAFMIN,
$ SCALE1, SCALE2, T, ULP, WI, WR1, WR2
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLAPY2
EXTERNAL DLAMCH, DLAPY2
C .. External Subroutines ..
EXTERNAL DLAG2, DLARTG, DLASV2, DROT
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX
C
C .. Executable Statements ..
C
SAFMIN = DLAMCH( 'S' )
ULP = DLAMCH( 'P' )
C
C Scale A.
C
ANORM = MAX( ABS( A(1,1) ) + ABS( A(2,1) ),
$ ABS( A(1,2) ) + ABS( A(2,2) ), SAFMIN )
A(1,1) = A(1,1) / ANORM
A(1,2) = A(1,2) / ANORM
A(2,1) = A(2,1) / ANORM
A(2,2) = A(2,2) / ANORM
C
C Scale B.
C
BNORM = MAX( ABS( B(1,1) ), ABS( B(1,2) ) + ABS( B(2,2) ), SAFMIN)
B(1,1) = B(1,1) / BNORM
B(1,2) = B(1,2) / BNORM
B(2,2) = B(2,2) / BNORM
C
C Check if A can be deflated.
C
IF ( ABS( A(2,1) ).LE.ULP ) THEN
CSL = ONE
SNL = ZERO
CSR = ONE
SNR = ZERO
WI = ZERO
A(2,1) = ZERO
B(2,1) = ZERO
C
C Check if B is singular.
C
ELSE IF ( ABS( B(1,1) ).LE.ULP ) THEN
CALL DLARTG( A(2,2), A(2,1), CSR, SNR, T )
SNR = -SNR
CALL DROT( 2, A(1,1), 1, A(1,2), 1, CSR, SNR )
CALL DROT( 2, B(1,1), LDB, B(2,1), LDB, CSR, SNR )
CSL = ONE
SNL = ZERO
WI = ZERO
A(2,1) = ZERO
B(1,1) = ZERO
B(2,1) = ZERO
ELSE IF( ABS( B(2,2) ).LE.ULP ) THEN
CALL DLARTG( A(1,1), A(2,1), CSL, SNL, R )
CSR = ONE
SNR = ZERO
WI = ZERO
CALL DROT( 2, A(1,1), LDA, A(2,1), LDA, CSL, SNL )
CALL DROT( 2, B(1,1), 1, B(1,2), 1, CSL, SNL )
A(2,1) = ZERO
B(2,1) = ZERO
B(2,2) = ZERO
ELSE
C
C B is nonsingular, first compute the eigenvalues of A / adj(B).
C
R = B(1,1)
B(1,1) = B(2,2)
B(2,2) = R
B(1,2) = -B(1,2)
CALL DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
$ WI )
C
IF( WI.EQ.ZERO ) THEN
C
C Two real eigenvalues, compute s*A-w*B.
C
H1 = SCALE1*A(1,1) - WR1*B(1,1)
H2 = SCALE1*A(1,2) - WR1*B(1,2)
H3 = SCALE1*A(2,2) - WR1*B(2,2)
C
RR = DLAPY2( H1, H2 )
QQ = DLAPY2( SCALE1*A(2,1), H3 )
C
IF ( RR.GT.QQ ) THEN
C
C Find right rotation matrix to zero 1,1 element of
C (sA - wB).
C
CALL DLARTG( H2, H1, CSR, SNR, T )
C
ELSE
C
C Find right rotation matrix to zero 2,1 element of
C (sA - wB).
C
CALL DLARTG( H3, SCALE1*A(2,1), CSR, SNR, T )
C
END IF
C
SNR = -SNR
CALL DROT( 2, A(1,1), 1, A(1,2), 1, CSR, SNR )
CALL DROT( 2, B(1,1), 1, B(1,2), 1, CSR, SNR )
C
C Compute inf norms of A and B.
C
H1 = MAX( ABS( A(1,1) ) + ABS( A(1,2) ),
$ ABS( A(2,1) ) + ABS( A(2,2) ) )
H2 = MAX( ABS( B(1,1) ) + ABS( B(1,2) ),
$ ABS( B(2,1) ) + ABS( B(2,2) ) )
C
IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
C
C Find left rotation matrix Q to zero out B(2,1).
C
CALL DLARTG( B(1,1), B(2,1), CSL, SNL, R )
C
ELSE
C
C Find left rotation matrix Q to zero out A(2,1).
C
CALL DLARTG( A(1,1), A(2,1), CSL, SNL, R )
C
END IF
C
CALL DROT( 2, A(1,1), LDA, A(2,1), LDA, CSL, SNL )
CALL DROT( 2, B(1,1), LDB, B(2,1), LDB, CSL, SNL )
C
A(2,1) = ZERO
B(2,1) = ZERO
C
C Re-adjoint B.
C
R = B(1,1)
B(1,1) = B(2,2)
B(2,2) = R
B(1,2) = -B(1,2)
C
ELSE
C
C A pair of complex conjugate eigenvalues:
C first compute the SVD of the matrix adj(B).
C
R = B(1,1)
B(1,1) = B(2,2)
B(2,2) = R
B(1,2) = -B(1,2)
CALL DLASV2( B(1,1), B(1,2), B(2,2), R, T, SNL, CSL,
$ SNR, CSR )
C
C Form (A,B) := Q(A,adj(B))Z' where Q is left rotation matrix
C and Z is right rotation matrix computed from DLASV2.
C
CALL DROT( 2, A(1,1), LDA, A(2,1), LDA, CSL, SNL )
CALL DROT( 2, B(1,1), LDB, B(2,1), LDB, CSR, SNR )
CALL DROT( 2, A(1,1), 1, A(1,2), 1, CSR, SNR )
CALL DROT( 2, B(1,1), 1, B(1,2), 1, CSL, SNL )
C
B(2,1) = ZERO
B(1,2) = ZERO
END IF
C
END IF
C
C Unscaling
C
R = B(1,1)
T = B(2,2)
A(1,1) = ANORM*A(1,1)
A(2,1) = ANORM*A(2,1)
A(1,2) = ANORM*A(1,2)
A(2,2) = ANORM*A(2,2)
B(1,1) = BNORM*B(1,1)
B(2,1) = BNORM*B(2,1)
B(1,2) = BNORM*B(1,2)
B(2,2) = BNORM*B(2,2)
C
IF( WI.EQ.ZERO ) THEN
ALPHAR(1) = A(1,1)
ALPHAR(2) = A(2,2)
ALPHAI(1) = ZERO
ALPHAI(2) = ZERO
BETA(1) = B(1,1)
BETA(2) = B(2,2)
ELSE
WR1 = ANORM*WR1
WI = ANORM*WI
IF ( ABS( WR1 ).GT.ONE .OR. WI.GT.ONE ) THEN
WR1 = WR1*R
WI = WI*R
R = ONE
END IF
IF ( ABS( WR1 ).GT.ONE .OR. ABS( WI ).GT.ONE ) THEN
WR1 = WR1*T
WI = WI*T
T = ONE
END IF
ALPHAR(1) = ( WR1 / SCALE1 )*R*T
ALPHAI(1) = ABS( ( WI / SCALE1 )*R*T )
ALPHAR(2) = ALPHAR(1)
ALPHAI(2) = -ALPHAI(1)
BETA(1) = BNORM
BETA(2) = BNORM
END IF
RETURN
C *** Last line of MB03YT ***
END
|