1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
|
SUBROUTINE MB03ZD( WHICH, METH, STAB, BALANC, ORTBAL, SELECT, N,
$ MM, ILO, SCALE, S, LDS, T, LDT, G, LDG, U1,
$ LDU1, U2, LDU2, V1, LDV1, V2, LDV2, M, WR, WI,
$ US, LDUS, UU, LDUU, LWORK, IWORK, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the stable and unstable invariant subspaces for a
C Hamiltonian matrix with no eigenvalues on the imaginary axis,
C using the output of the SLICOT Library routine MB03XD.
C
C ARGUMENTS
C
C Mode Parameters
C
C WHICH CHARACTER*1
C Specifies the cluster of eigenvalues for which the
C invariant subspaces are computed:
C = 'A': select all n eigenvalues;
C = 'S': select a cluster of eigenvalues specified by
C SELECT.
C
C METH CHARACTER*1
C If WHICH = 'A' this parameter specifies the method to be
C used for computing bases of the invariant subspaces:
C = 'S': compute the n-dimensional basis from a set of
C n vectors;
C = 'L': compute the n-dimensional basis from a set of
C 2*n vectors.
C When in doubt, use METH = 'S'. In some cases, METH = 'L'
C may result in more accurately computed invariant
C subspaces, see [1].
C
C STAB CHARACTER*1
C Specifies the type of invariant subspaces to be computed:
C = 'S': compute the stable invariant subspace, i.e., the
C invariant subspace belonging to those selected
C eigenvalues that have negative real part;
C = 'U': compute the unstable invariant subspace, i.e.,
C the invariant subspace belonging to those
C selected eigenvalues that have positive real
C part;
C = 'B': compute both the stable and unstable invariant
C subspaces.
C
C BALANC CHARACTER*1
C Specifies the type of inverse balancing transformation
C required:
C = 'N': do nothing;
C = 'P': do inverse transformation for permutation only;
C = 'S': do inverse transformation for scaling only;
C = 'B': do inverse transformations for both permutation
C and scaling.
C BALANC must be the same as the argument BALANC supplied to
C MB03XD. Note that if the data is further post-processed,
C e.g., for solving an algebraic Riccati equation, it is
C recommended to delay inverse balancing (in particular the
C scaling part) and apply it to the final result only,
C see [2].
C
C ORTBAL CHARACTER*1
C If BALANC <> 'N', this option specifies how inverse
C balancing is applied to the computed invariant subspaces:
C = 'B': apply inverse balancing before orthogonal bases
C for the invariant subspaces are computed;
C = 'A': apply inverse balancing after orthogonal bases
C for the invariant subspaces have been computed;
C this may yield non-orthogonal bases if
C BALANC = 'S' or BALANC = 'B'.
C
C SELECT (input) LOGICAL array, dimension (N)
C If WHICH = 'S', SELECT specifies the eigenvalues
C corresponding to the positive and negative square
C roots of the eigenvalues of S*T in the selected cluster.
C To select a real eigenvalue w(j), SELECT(j) must be set
C to .TRUE.. To select a complex conjugate pair of
C eigenvalues w(j) and w(j+1), corresponding to a 2-by-2
C diagonal block, both SELECT(j) and SELECT(j+1) must be set
C to .TRUE.; a complex conjugate pair of eigenvalues must be
C either both included in the cluster or both excluded.
C This array is not referenced if WHICH = 'A'.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices S, T and G. N >= 0.
C
C MM (input) INTEGER
C The number of columns in the arrays US and/or UU.
C If WHICH = 'A' and METH = 'S', MM >= N;
C if WHICH = 'A' and METH = 'L', MM >= 2*N;
C if WHICH = 'S', MM >= M.
C The minimal values above for MM give the numbers of
C vectors to be used for computing a basis for the
C invariant subspace(s).
C
C ILO (input) INTEGER
C If BALANC <> 'N', then ILO is the integer returned by
C MB03XD. 1 <= ILO <= N+1.
C
C SCALE (input) DOUBLE PRECISION array, dimension (N)
C If BALANC <> 'N', the leading N elements of this array
C must contain details of the permutation and scaling
C factors, as returned by MB03XD.
C This array is not referenced if BALANC = 'N'.
C
C S (input/output) DOUBLE PRECISION array, dimension (LDS,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix S in real Schur form.
C On exit, the leading N-by-N part of this array is
C overwritten.
C
C LDS INTEGER
C The leading dimension of the array S. LDS >= max(1,N).
C
C T (input/output) DOUBLE PRECISION array, dimension (LDT,N)
C On entry, the leading N-by-N part of this array must
C contain the upper triangular matrix T.
C On exit, the leading N-by-N part of this array is
C overwritten.
C
C LDT INTEGER
C The leading dimension of the array T. LDT >= max(1,N).
C
C G (input/output) DOUBLE PRECISION array, dimension (LDG,N)
C On entry, if METH = 'L', the leading N-by-N part of this
C array must contain a general matrix G.
C On exit, if METH = 'L', the leading N-by-N part of this
C array is overwritten.
C This array is not referenced if METH = 'S'.
C
C LDG INTEGER
C The leading dimension of the array G. LDG >= 1.
C LDG >= max(1,N) if METH = 'L'.
C
C U1 (input/output) DOUBLE PRECISION array, dimension (LDU1,N)
C On entry, the leading N-by-N part of this array must
C contain the (1,1) block of an orthogonal symplectic
C matrix U.
C On exit, this array is overwritten.
C
C LDU1 INTEGER
C The leading dimension of the array U1. LDU1 >= MAX(1,N).
C
C U2 (input/output) DOUBLE PRECISION array, dimension (LDU2,N)
C On entry, the leading N-by-N part of this array must
C contain the (2,1) block of an orthogonal symplectic
C matrix U.
C On exit, this array is overwritten.
C
C LDU2 INTEGER
C The leading dimension of the array U2. LDU2 >= MAX(1,N).
C
C V1 (input/output) DOUBLE PRECISION array, dimension (LDV1,N)
C On entry, the leading N-by-N part of this array must
C contain the (1,1) block of an orthogonal symplectic
C matrix V.
C On exit, this array is overwritten.
C
C LDV1 INTEGER
C The leading dimension of the array V1. LDV1 >= MAX(1,N).
C
C V2 (input/output) DOUBLE PRECISION array, dimension (LDV1,N)
C On entry, the leading N-by-N part of this array must
C contain the (2,1) block of an orthogonal symplectic
C matrix V.
C On exit, this array is overwritten.
C
C LDV2 INTEGER
C The leading dimension of the array V2. LDV2 >= MAX(1,N).
C
C M (output) INTEGER
C The number of selected eigenvalues.
C
C WR (output) DOUBLE PRECISION array, dimension (M)
C WI (output) DOUBLE PRECISION array, dimension (M)
C On exit, the leading M elements of WR and WI contain the
C real and imaginary parts, respectively, of the selected
C eigenvalues that have nonpositive real part. Complex
C conjugate pairs of eigenvalues with real part not equal
C to zero will appear consecutively with the eigenvalue
C having the positive imaginary part first. Note that, due
C to roundoff errors, these numbers may differ from the
C eigenvalues computed by MB03XD.
C
C US (output) DOUBLE PRECISION array, dimension (LDUS,MM)
C On exit, if STAB = 'S' or STAB = 'B', the leading 2*N-by-M
C part of this array contains a basis for the stable
C invariant subspace belonging to the selected eigenvalues.
C This basis is orthogonal unless ORTBAL = 'A'.
C
C LDUS INTEGER
C The leading dimension of the array US. LDUS >= 1.
C If STAB = 'S' or STAB = 'B', LDUS >= 2*N.
C
C UU (output) DOUBLE PRECISION array, dimension (LDUU,MM)
C On exit, if STAB = 'U' or STAB = 'B', the leading 2*N-by-M
C part of this array contains a basis for the unstable
C invariant subspace belonging to the selected eigenvalues.
C This basis is orthogonal unless ORTBAL = 'A'.
C
C LDUU INTEGER
C The leading dimension of the array UU. LDUU >= 1.
C If STAB = 'U' or STAB = 'B', LDUU >= 2*N.
C
C Workspace
C
C LWORK LOGICAL array, dimension (2*N)
C This array is only referenced if WHICH = 'A' and
C METH = 'L'.
C
C IWORK INTEGER array, dimension (2*N),
C This array is only referenced if WHICH = 'A' and
C METH = 'L'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal
C value of LDWORK.
C On exit, if INFO = -35, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C If WHICH = 'S' or METH = 'S':
C LDWORK >= MAX( 1, 4*M*M + MAX( 8*M, 4*N ) ).
C If WHICH = 'A' and METH = 'L' and
C ( STAB = 'U' or STAB = 'S' ):
C LDWORK >= MAX( 1, 2*N*N + 2*N, 8*N ).
C If WHICH = 'A' and METH = 'L' and STAB = 'B':
C LDWORK >= 8*N + 1.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: some of the selected eigenvalues are on or too close
C to the imaginary axis;
C = 2: reordering of the product S*T in routine MB03ZA
C failed because some eigenvalues are too close to
C separate;
C = 3: the QR algorithm failed to compute some Schur form
C in MB03ZA;
C = 4: reordering of the Hamiltonian Schur form in routine
C MB03TD failed because some eigenvalues are too close
C to separate.
C
C METHOD
C
C This is an implementation of Algorithm 1 in [1].
C
C NUMERICAL ASPECTS
C
C The method is strongly backward stable for an embedded
C (skew-)Hamiltonian matrix, see [1]. Although good results have
C been reported if the eigenvalues are not too close to the
C imaginary axis, the method is not backward stable for the original
C Hamiltonian matrix itself.
C
C REFERENCES
C
C [1] Benner, P., Mehrmann, V., and Xu, H.
C A new method for computing the stable invariant subspace of a
C real Hamiltonian matrix, J. Comput. Appl. Math., 86,
C pp. 17-43, 1997.
C
C [2] Benner, P.
C Symplectic balancing of Hamiltonian matrices.
C SIAM J. Sci. Comput., 22 (5), pp. 1885-1904, 2000.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, June 2008 (SLICOT version of the HAPACK routine DHASUB).
C
C KEYWORDS
C
C Hamiltonian matrix, invariant subspace.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER BALANC, METH, ORTBAL, STAB, WHICH
INTEGER ILO, INFO, LDG, LDS, LDT, LDU1, LDU2, LDUS,
$ LDUU, LDV1, LDV2, LDWORK, M, MM, N
C .. Array Arguments ..
LOGICAL LWORK(*), SELECT(*)
INTEGER IWORK(*)
DOUBLE PRECISION DWORK(*), G(LDG,*), S(LDS,*), SCALE(*),
$ T(LDT,*), U1(LDU1,*), U2(LDU2,*), US(LDUS,*),
$ UU(LDUU,*), V1(LDV1,*), V2(LDV2,*), WI(*),
$ WR(*)
C .. Local Scalars ..
LOGICAL LALL, LBAL, LBEF, LEXT, LUS, LUU, PAIR
INTEGER I, IERR, J, K, PDW, PW, WRKMIN, WRKOPT
DOUBLE PRECISION TEMP
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DGEMM, DGEQP3, DGEQRF, DLACPY, DLASCL,
$ DLASET, DORGQR, DSCAL, MB01UX, MB03TD, MB03ZA,
$ MB04DI, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN
C
C .. Executable Statements ..
C
C Decode and check input parameters.
C
LALL = LSAME( WHICH, 'A' )
IF ( LALL ) THEN
LEXT = LSAME( METH, 'L' )
ELSE
LEXT = .FALSE.
END IF
LUS = LSAME( STAB, 'S' ) .OR. LSAME( STAB, 'B' )
LUU = LSAME( STAB, 'U' ) .OR. LSAME( STAB, 'B' )
LBAL = LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'S' ) .OR.
$ LSAME( BALANC, 'B' )
LBEF = .FALSE.
IF ( LBAL )
$ LBEF = LSAME( ORTBAL, 'B' )
C
WRKMIN = 1
WRKOPT = WRKMIN
C
INFO = 0
C
IF ( .NOT.LALL .AND. .NOT.LSAME( WHICH, 'S' ) ) THEN
INFO = -1
ELSE IF ( LALL .AND. ( .NOT.LEXT .AND.
$ .NOT.LSAME( METH, 'S' ) ) ) THEN
INFO = -2
ELSE IF ( .NOT.LUS .AND. .NOT.LUU ) THEN
INFO = -3
ELSE IF ( .NOT.LBAL .AND. .NOT.LSAME( BALANC, 'N' ) ) THEN
INFO = -4
ELSE IF ( LBAL .AND. ( .NOT.LBEF .AND.
$ .NOT.LSAME( ORTBAL, 'A' ) ) ) THEN
INFO = -5
ELSE
IF ( LALL ) THEN
M = N
ELSE
C
C Set M to the dimension of the specified invariant subspace.
C
M = 0
PAIR = .FALSE.
DO 10 K = 1, N
IF ( PAIR ) THEN
PAIR = .FALSE.
ELSE
IF ( K.LT.N ) THEN
IF ( S(K+1,K).EQ.ZERO ) THEN
IF ( SELECT(K) )
$ M = M + 1
ELSE
PAIR = .TRUE.
IF ( SELECT(K) .OR. SELECT(K+1) )
$ M = M + 2
END IF
ELSE
IF ( SELECT(N) )
$ M = M + 1
END IF
END IF
10 CONTINUE
END IF
C
C Compute workspace requirements.
C
IF ( .NOT.LEXT ) THEN
WRKOPT = MAX( WRKOPT, 4*M*M + MAX( 8*M, 4*N ) )
ELSE
IF ( LUS.AND.LUU ) THEN
WRKOPT = MAX( WRKOPT, 8*N + 1 )
ELSE
WRKOPT = MAX( WRKOPT, 2*N*N + 2*N, 8*N )
END IF
END IF
C
IF ( N.LT.0 ) THEN
INFO = -7
ELSE IF ( MM.LT.M .OR. ( LEXT .AND. MM.LT.2*N ) ) THEN
INFO = -8
ELSE IF ( LBAL .AND. ( ILO.LT.1 .OR. ILO.GT.N+1 ) ) THEN
INFO = -9
ELSE IF ( LDS.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF ( LDT.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF ( LDG.LT.1 .OR. ( LEXT .AND. LDG.LT.N ) ) THEN
INFO = -16
ELSE IF ( LDU1.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF ( LDU2.LT.MAX( 1, N ) ) THEN
INFO = -20
ELSE IF ( LDV1.LT.MAX( 1, N ) ) THEN
INFO = -22
ELSE IF ( LDV2.LT.MAX( 1, N ) ) THEN
INFO = -24
ELSE IF ( LDUS.LT.1 .OR. ( LUS .AND. LDUS.LT.2*N ) ) THEN
INFO = -29
ELSE IF ( LDUU.LT.1 .OR. ( LUU .AND. LDUU.LT.2*N ) ) THEN
INFO = -31
ELSE IF ( LDWORK.LT.WRKMIN ) THEN
INFO = -35
DWORK(1) = DBLE( WRKMIN )
END IF
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB03ZD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MIN( M, N ).EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
WRKOPT = WRKMIN
C
IF ( .NOT.LEXT ) THEN
C
C Workspace requirements: 4*M*M + MAX( 8*M, 4*N ).
C
PW = 1
PDW = PW + 4*M*M
CALL MB03ZA( 'No Update', 'Update', 'Update', 'Init', WHICH,
$ SELECT, N, S, LDS, T, LDT, G, LDG, U1, LDU1, U2,
$ LDU2, V1, LDV1, V2, LDV2, DWORK(PW), 2*M, WR, WI,
$ M, DWORK(PDW), LDWORK-PDW+1, IERR )
IF ( IERR.NE.0 )
$ GO TO 250
C
PDW = PW + 2*M*M
CALL MB01UX( 'Right', 'Upper', 'No Transpose', N, M, ONE,
$ DWORK(PW), 2*M, V1, LDV1, DWORK(PDW),
$ LDWORK-PDW+1, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
C
IF ( LUS )
$ CALL DLACPY( 'All', N, M, V1, LDV1, US, LDUS )
IF ( LUU )
$ CALL DLACPY( 'All', N, M, V1, LDV1, UU, LDUU )
C
CALL MB01UX( 'Right', 'Upper', 'No Transpose', N, M, ONE,
$ DWORK(PW+M), 2*M, U1, LDU1, DWORK(PDW),
$ LDWORK-PDW+1, IERR )
C
IF ( LUS ) THEN
DO 20 J = 1, M
CALL DAXPY( N, -ONE, U1(1,J), 1, US(1,J), 1 )
20 CONTINUE
END IF
IF ( LUU ) THEN
DO 30 J = 1, M
CALL DAXPY( N, ONE, U1(1,J), 1, UU(1,J), 1 )
30 CONTINUE
END IF
C
CALL MB01UX( 'Right', 'Upper', 'No Transpose', N, M, -ONE,
$ DWORK(PW), 2*M, V2, LDV2, DWORK(PDW),
$ LDWORK-PDW+1, IERR )
C
IF ( LUS )
$ CALL DLACPY( 'All', N, M, V2, LDV2, US(N+1,1), LDUS )
IF ( LUU )
$ CALL DLACPY( 'All', N, M, V2, LDV2, UU(N+1,1), LDUU )
C
CALL MB01UX( 'Right', 'Upper', 'No Transpose', N, M, ONE,
$ DWORK(PW+M), 2*M, U2, LDU2, DWORK(PDW),
$ LDWORK-PDW+1, IERR )
C
IF ( LUS ) THEN
DO 40 J = 1, M
CALL DAXPY( N, ONE, U2(1,J), 1, US(N+1,J), 1 )
40 CONTINUE
END IF
IF ( LUU ) THEN
DO 50 J = 1, M
CALL DAXPY( N, -ONE, U2(1,J), 1, UU(N+1,J), 1 )
50 CONTINUE
END IF
C
C Orthonormalize obtained bases and apply inverse balancing
C transformation.
C
IF ( LBAL .AND. LBEF ) THEN
IF ( LUS )
$ CALL MB04DI( BALANC, 'Positive', N, ILO, SCALE, M, US,
$ LDUS, US(N+1,1), LDUS, IERR )
IF ( LUU )
$ CALL MB04DI( BALANC, 'Positive', N, ILO, SCALE, M, UU,
$ LDUU, UU(N+1,1), LDUU, IERR )
END IF
C
IF ( LUS ) THEN
CALL DGEQRF( 2*N, M, US, LDUS, DWORK(1), DWORK(M+1),
$ LDWORK-M, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(M+1) ) + M )
CALL DORGQR( 2*N, M, M, US, LDUS, DWORK(1), DWORK(M+1),
$ LDWORK-M, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(M+1) ) + M )
END IF
IF ( LUU ) THEN
CALL DGEQRF( 2*N, M, UU, LDUU, DWORK(1), DWORK(M+1),
$ LDWORK-M, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(M+1) ) + M )
CALL DORGQR( 2*N, M, M, UU, LDUU, DWORK(1), DWORK(M+1),
$ LDWORK-M, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(M+1) ) + M )
END IF
C
IF ( LBAL .AND. .NOT.LBEF ) THEN
IF ( LUS )
$ CALL MB04DI( BALANC, 'Positive', N, ILO, SCALE, M, US,
$ LDUS, US(N+1,1), LDUS, IERR )
IF ( LUU )
$ CALL MB04DI( BALANC, 'Positive', N, ILO, SCALE, M, UU,
$ LDUU, UU(N+1,1), LDUU, IERR )
END IF
C
ELSE
C
DO 60 I = 1, 2*N
LWORK(I) = .TRUE.
60 CONTINUE
C
IF ( LUS .AND.( .NOT.LUU ) ) THEN
C
C Workspace requirements: MAX( 2*N*N + 2*N, 8*N )
C
CALL MB03ZA( 'Update', 'Update', 'Update', 'Init', WHICH,
$ SELECT, N, S, LDS, T, LDT, G, LDG, U1, LDU1,
$ U2, LDU2, V1, LDV1, V2, LDV2, US, LDUS, WR,
$ WI, M, DWORK, LDWORK, IERR )
IF ( IERR.NE.0 )
$ GO TO 250
C
CALL MB01UX( 'Left', 'Lower', 'Transpose', N, N, ONE,
$ US(N+1,N+1), LDUS, G, LDG, DWORK, LDWORK,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(1,N+1), LDUS, G, LDG, DWORK, LDWORK,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
DO 70 J = 1, N
CALL DAXPY( J, ONE, G(J,1), LDG, G(1,J), 1 )
70 CONTINUE
PDW = 2*N*N+1
C
C DW <- -[V1;V2]*W11
C
CALL DLACPY( 'All', N, N, V1, LDV1, DWORK, 2*N )
CALL DLACPY( 'All', N, N, V2, LDV2, DWORK(N+1), 2*N )
CALL MB01UX( 'Right', 'Upper', 'No Transpose', 2*N, N, -ONE,
$ US, LDUS, DWORK, 2*N, DWORK(PDW), LDWORK-PDW+1,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
C
C DW2 <- DW2 - U2*W21
C
CALL DLACPY( 'All', N, N, U2, LDU2, US, LDUS )
CALL MB01UX( 'Right', 'Upper', 'No Transpose', N, N, ONE,
$ US(N+1,1), LDUS, US, LDUS, DWORK(PDW),
$ LDWORK-PDW+1, IERR )
DO 80 J = 1, N
CALL DAXPY( N, ONE, US(1,J), 1, DWORK(N+2*(J-1)*N+1), 1 )
80 CONTINUE
C
C US11 <- -U1*W21 - DW1
C
CALL DLACPY( 'All', N, N, U1, LDU1, US, LDUS )
CALL MB01UX( 'Right', 'Upper', 'No Transpose', N, N, -ONE,
$ US(N+1,1), LDUS, US, LDUS, DWORK(PDW),
$ LDWORK-PDW+1, IERR )
DO 90 J = 1, N
CALL DAXPY( N, -ONE, DWORK(2*(J-1)*N+1), 1, US(1,J), 1 )
90 CONTINUE
C
C US21 <- DW2
C
CALL DLACPY( 'All', N, N, DWORK(N+1), 2*N, US(N+1,1), LDUS )
C
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(1,N+1), LDUS, V1, LDV1, DWORK, LDWORK,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(1,N+1), LDUS, V2, LDV2, DWORK, LDWORK,
$ IERR )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(N+1,N+1), LDUS, U1, LDU1, DWORK, LDWORK,
$ IERR )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(N+1,N+1), LDUS, U2, LDU2, DWORK, LDWORK,
$ IERR )
CALL DLACPY( 'All', N, N, V1, LDV1, US(1,N+1), LDUS )
CALL DLACPY( 'All', N, N, V2, LDV2, US(N+1,N+1), LDUS )
DO 100 J = 1, N
CALL DAXPY( N, -ONE, U1(1,J), 1, US(1,N+J), 1 )
100 CONTINUE
DO 110 J = 1, N
CALL DAXPY( N, -ONE, U2(1,J), 1, US(N+1,N+J), 1 )
110 CONTINUE
C
CALL MB03TD( 'Hamiltonian', 'Update', LWORK, LWORK(N+1), N,
$ S, LDS, G, LDG, US(1,N+1), LDUS, US(N+1,N+1),
$ LDUS, WR, WI, M, DWORK, LDWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 4
RETURN
END IF
CALL DLASCL( 'General', 0, 0, ONE, -ONE, N, N, US(N+1,N+1),
$ LDUS, IERR )
C
ELSE IF ( ( .NOT.LUS ).AND.LUU ) THEN
C
C Workspace requirements: MAX( 2*N*N + 2*N, 8*N )
C
CALL MB03ZA( 'Update', 'Update', 'Update', 'Init', WHICH,
$ SELECT, N, S, LDS, T, LDT, G, LDG, U1, LDU1,
$ U2, LDU2, V1, LDV1, V2, LDV2, UU, LDUU, WR,
$ WI, M, DWORK, LDWORK, IERR )
IF ( IERR.NE.0 )
$ GO TO 250
CALL MB01UX( 'Left', 'Lower', 'Transpose', N, N, ONE,
$ UU(N+1,N+1), LDUU, G, LDG, DWORK, LDWORK,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ UU(1,N+1), LDUU, G, LDG, DWORK, LDWORK,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
DO 120 J = 1, N
CALL DAXPY( J, ONE, G(J,1), LDG, G(1,J), 1 )
120 CONTINUE
PDW = 2*N*N+1
C
C DW <- -[V1;V2]*W11
C
CALL DLACPY( 'All', N, N, V1, LDV1, DWORK, 2*N )
CALL DLACPY( 'All', N, N, V2, LDV2, DWORK(N+1), 2*N )
CALL MB01UX( 'Right', 'Upper', 'No Transpose', 2*N, N, -ONE,
$ UU, LDUU, DWORK, 2*N, DWORK(PDW), LDWORK-PDW+1,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(PDW) ) + PDW - 1 )
C
C DW2 <- DW2 - U2*W21
C
CALL DLACPY( 'All', N, N, U2, LDU2, UU, LDUU )
CALL MB01UX( 'Right', 'Upper', 'No Transpose', N, N, -ONE,
$ UU(N+1,1), LDUU, UU, LDUU, DWORK(PDW),
$ LDWORK-PDW+1, IERR )
DO 130 J = 1, N
CALL DAXPY( N, ONE, UU(1,J), 1, DWORK(N+2*(J-1)*N+1), 1 )
130 CONTINUE
C
C UU11 <- U1*W21 - DW1
C
CALL DLACPY( 'All', N, N, U1, LDU1, UU, LDUU )
CALL MB01UX( 'Right', 'Upper', 'No Transpose', N, N, ONE,
$ UU(N+1,1), LDUU, UU, LDUU, DWORK(PDW),
$ LDWORK-PDW+1, IERR )
DO 140 J = 1, N
CALL DAXPY( N, -ONE, DWORK(2*(J-1)*N+1), 1, UU(1,J), 1 )
140 CONTINUE
C
C UU21 <- DW2
C
CALL DLACPY( 'All', N, N, DWORK(N+1), 2*N, UU(N+1,1), LDUU )
C
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ UU(1,N+1), LDUU, V1, LDV1, DWORK, LDWORK,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ UU(1,N+1), LDUU, V2, LDV2, DWORK, LDWORK,
$ IERR )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ UU(N+1,N+1), LDUU, U1, LDU1, DWORK, LDWORK,
$ IERR )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ UU(N+1,N+1), LDUU, U2, LDU2, DWORK, LDWORK,
$ IERR )
CALL DLACPY( 'All', N, N, V1, LDV1, UU(1,N+1), LDUU )
CALL DLACPY( 'All', N, N, V2, LDV2, UU(N+1,N+1), LDUU )
DO 150 J = 1, N
CALL DAXPY( N, ONE, U1(1,J), 1, UU(1,N+J), 1 )
150 CONTINUE
DO 160 J = 1, N
CALL DAXPY( N, ONE, U2(1,J), 1, UU(N+1,N+J), 1 )
160 CONTINUE
C
CALL MB03TD( 'Hamiltonian', 'Update', LWORK, LWORK(N+1), N,
$ S, LDS, G, LDG, UU(1,N+1), LDUU, UU(N+1,N+1),
$ LDUU, WR, WI, M, DWORK, LDWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 4
RETURN
END IF
CALL DLASCL( 'General', 0, 0, ONE, -ONE, N, N, UU(N+1,N+1),
$ LDUU, IERR )
ELSE
C
C Workspace requirements: 8*N
C
CALL MB03ZA( 'Update', 'Update', 'Update', 'Init', WHICH,
$ SELECT, N, S, LDS, T, LDT, G, LDG, U1, LDU1,
$ U2, LDU2, V1, LDV1, V2, LDV2, US, LDUS, WR,
$ WI, M, DWORK, LDWORK, IERR )
IF ( IERR.NE.0 )
$ GO TO 250
CALL MB01UX( 'Left', 'Lower', 'Transpose', N, N, ONE,
$ US(N+1,N+1), LDUS, G, LDG, DWORK, LDWORK,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(1,N+1), LDUS, G, LDG, DWORK, LDWORK,
$ IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
DO 170 J = 1, N
CALL DAXPY( J, ONE, G(J,1), LDG, G(1,J), 1 )
170 CONTINUE
C
C UU = [ V1 -V2; U1 -U2 ]*diag(W11,W21)
C
CALL DLACPY( 'All', N, N, V1, LDV1, UU, LDUU )
CALL DLACPY( 'All', N, N, V2, LDV2, UU(N+1,1), LDUU )
CALL MB01UX( 'Right', 'Upper', 'No Transpose', 2*N, N, ONE,
$ US, LDUS, UU, LDUU, DWORK, LDWORK, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
CALL DLACPY( 'All', N, N, U1, LDU1, UU(1,N+1), LDUU )
CALL DLACPY( 'All', N, N, U2, LDU2, UU(N+1,N+1), LDUU )
CALL MB01UX( 'Right', 'Upper', 'No Transpose', 2*N, N, ONE,
$ US(N+1,1), LDUS, UU(1,N+1), LDUU, DWORK,
$ LDWORK, IERR )
CALL DLASCL( 'General', 0, 0, ONE, -ONE, N, 2*N, UU(N+1,1),
$ LDUU, IERR )
C
CALL DLACPY( 'All', 2*N, N, UU, LDUU, US, LDUS )
DO 180 J = 1, N
CALL DAXPY( 2*N, -ONE, UU(1,N+J), 1, US(1,J), 1 )
180 CONTINUE
DO 190 J = 1, N
CALL DAXPY( 2*N, ONE, UU(1,N+J), 1, UU(1,J), 1 )
190 CONTINUE
C
C V1 <- V1*W12-U1*W22
C U1 <- V1*W12+U1*W22
C V2 <- V2*W12-U2*W22
C U2 <- V2*W12+U2*W22
C
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(1,N+1), LDUS, V1, LDV1, DWORK, LDWORK,
$ IERR )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(1,N+1), LDUS, V2, LDV2, DWORK, LDWORK,
$ IERR )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(N+1,N+1), LDUS, U1, LDU1, DWORK, LDWORK,
$ IERR )
CALL MB01UX( 'Right', 'Lower', 'No Transpose', N, N, ONE,
$ US(N+1,N+1), LDUS, U2, LDU2, DWORK, LDWORK,
$ IERR )
DO 210 J = 1, N
DO 200 I = 1, N
TEMP = V1(I,J)
V1(I,J) = TEMP - U1(I,J)
U1(I,J) = TEMP + U1(I,J)
200 CONTINUE
210 CONTINUE
DO 230 J = 1, N
DO 220 I = 1, N
TEMP = V2(I,J)
V2(I,J) = TEMP - U2(I,J)
U2(I,J) = TEMP + U2(I,J)
220 CONTINUE
230 CONTINUE
C
CALL DLASET( 'All', 2*N, N, ZERO, ONE, US(1,N+1), LDUS )
CALL MB03TD( 'Hamiltonian', 'Update', LWORK, LWORK(N+1), N,
$ S, LDS, G, LDG, US(1,N+1), LDUS, US(N+1,N+1),
$ LDUS, WR, WI, M, DWORK, LDWORK, IERR )
IF ( IERR.NE.0 ) THEN
INFO = 4
RETURN
END IF
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
$ U1, LDU1, US(1,N+1), LDUS, ZERO, UU(1,N+1),
$ LDUU )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, -ONE,
$ U2, LDU2, US(N+1,N+1), LDUS, ONE, UU(1,N+1),
$ LDUU )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, -ONE,
$ U1, LDU1, US(N+1,N+1), LDUS, ZERO, UU(N+1,N+1),
$ LDUU )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, -ONE,
$ U2, LDU2, US(1,N+1), LDUS, ONE, UU(N+1,N+1),
$ LDUU )
CALL DLACPY( 'All', N, N, US(1,N+1), LDUS, U1, LDU1 )
CALL DLACPY( 'All', N, N, US(N+1,N+1), LDUS, U2, LDU2 )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
$ V1, LDV1, U1, LDU1, ZERO, US(1,N+1), LDUS )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, -ONE,
$ V2, LDV2, U2, LDU2, ONE, US(1,N+1), LDUS )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, -ONE,
$ V1, LDV1, U2, LDU2, ZERO, US(N+1,N+1), LDUS )
CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, -ONE,
$ V2, LDV2, U1, LDU1, ONE, US(N+1,N+1), LDUS )
END IF
C
C Orthonormalize obtained bases and apply inverse balancing
C transformation.
C
IF ( LBAL .AND. LBEF ) THEN
IF ( LUS )
$ CALL MB04DI( BALANC, 'Positive', N, ILO, SCALE, N, US,
$ LDUS, US(N+1,1), LDUS, IERR )
IF ( LUU )
$ CALL MB04DI( BALANC, 'Positive', N, ILO, SCALE, N, UU,
$ LDUU, UU(N+1,1), LDUU, IERR )
END IF
C
C Workspace requirements: 8*N+1
C
DO 240 J = 1, 2*N
IWORK(J) = 0
240 CONTINUE
IF ( LUS ) THEN
CALL DGEQP3( 2*N, 2*N, US, LDUS, IWORK, DWORK, DWORK(2*N+1),
$ LDWORK-2*N, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(2*N+1) ) + 2*N )
CALL DORGQR( 2*N, 2*N, N, US, LDUS, DWORK, DWORK(2*N+1),
$ LDWORK-2*N, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(2*N+1) ) + 2*N )
END IF
IF ( LUU ) THEN
CALL DGEQP3( 2*N, 2*N, UU, LDUU, IWORK, DWORK, DWORK(2*N+1),
$ LDWORK-2*N, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(2*N+1) ) + 2*N )
CALL DORGQR( 2*N, 2*N, N, UU, LDUU, DWORK, DWORK(2*N+1),
$ LDWORK-2*N, IERR )
WRKOPT = MAX( WRKOPT, INT( DWORK(2*N+1) ) + 2*N )
END IF
C
IF ( LBAL .AND. .NOT.LBEF ) THEN
IF ( LUS )
$ CALL MB04DI( BALANC, 'Positive', N, ILO, SCALE, N, US,
$ LDUS, US(N+1,1), LDUS, IERR )
IF ( LUU )
$ CALL MB04DI( BALANC, 'Positive', N, ILO, SCALE, N, UU,
$ LDUU, UU(N+1,1), LDUU, IERR )
END IF
END IF
C
CALL DSCAL( M, -ONE, WR, 1 )
DWORK(1) = DBLE( WRKOPT )
C
RETURN
250 CONTINUE
IF ( IERR.EQ.1 ) THEN
INFO = 2
ELSE IF ( IERR.EQ.2 .OR. IERR.EQ.4 ) THEN
INFO = 1
ELSE IF ( IERR.EQ.3 ) THEN
INFO = 3
END IF
RETURN
C *** Last line of MB03ZD ***
END
|