File: MB04DD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (440 lines) | stat: -rw-r--r-- 15,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
      SUBROUTINE MB04DD( JOB, N, A, LDA, QG, LDQG, ILO, SCALE, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To balance a real Hamiltonian matrix,
C
C                   [  A   G  ]
C              H =  [       T ] ,
C                   [  Q  -A  ]
C
C     where A is an N-by-N matrix and G, Q are N-by-N symmetric
C     matrices. This involves, first, permuting H by a symplectic
C     similarity transformation to isolate eigenvalues in the first
C     1:ILO-1 elements on the diagonal of A; and second, applying a
C     diagonal similarity transformation to rows and columns
C     ILO:2*N-ILO+1 to make the rows and columns as close in 1-norm
C     as possible. Both steps are optional.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOB     CHARACTER*1
C             Specifies the operations to be performed on H:
C             = 'N':  none, set ILO = 1, SCALE(I) = 1.0, I = 1 .. N;
C             = 'P':  permute only;
C             = 'S':  scale only;
C             = 'B':  both permute and scale.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A. N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the matrix A of the balanced Hamiltonian. In particular,
C             the lower triangular part of the first ILO-1 columns of A
C             is zero.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     QG      (input/output) DOUBLE PRECISION array, dimension
C                            (LDQG,N+1)
C             On entry, the leading N-by-N+1 part of this array must
C             contain the lower triangular part of the matrix Q and
C             the upper triangular part of the matrix G.
C             On exit, the leading N-by-N+1 part of this array contains
C             the lower and upper triangular parts of the matrices Q and
C             G, respectively, of the balanced Hamiltonian. In
C             particular, the lower triangular and diagonal part of the
C             first ILO-1 columns of QG is zero.
C
C     LDQG    INTEGER
C             The leading dimension of the array QG.  LDQG >= MAX(1,N).
C
C     ILO     (output) INTEGER
C             ILO-1 is the number of deflated eigenvalues in the
C             balanced Hamiltonian matrix.
C
C     SCALE   (output) DOUBLE PRECISION array of dimension (N)
C             Details of the permutations and scaling factors applied to
C             H.  For j = 1,...,ILO-1 let P(j) = SCALE(j). If P(j) <= N,
C             then rows and columns P(j) and P(j)+N are interchanged
C             with rows and columns j and j+N, respectively. If
C             P(j) > N, then row and column P(j)-N are interchanged with
C             row and column j+N by a generalized symplectic
C             permutation. For j = ILO,...,N the j-th element of SCALE
C             contains the factor of the scaling applied to row and
C             column j.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     REFERENCES
C
C     [1] Benner, P.
C         Symplectic balancing of Hamiltonian matrices.
C         SIAM J. Sci. Comput., 22 (5), pp. 1885-1904, 2000.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, June 2008 (SLICOT version of the HAPACK routine DHABAL).
C
C     KEYWORDS
C
C     Balancing, Hamiltonian matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOB
      INTEGER           ILO, INFO, LDA, LDQG, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), QG(LDQG,*), SCALE(*)
C     .. Local Scalars ..
      LOGICAL           CONV, LPERM, LSCAL
      INTEGER           I, IC, ILOOLD, J
      DOUBLE PRECISION  C, F, GII, MAXC, MAXR, QII, R, SCLFAC,
     $                  SFMAX1, SFMAX2, SFMIN1, SFMIN2, TEMP
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           IDAMAX
      DOUBLE PRECISION  DASUM, DLAMCH
      EXTERNAL          DASUM, DLAMCH, IDAMAX, LSAME
C     .. External Subroutines ..
      EXTERNAL          DRSCL, DSCAL, DSWAP, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, MAX, MIN
C
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      INFO = 0
      LPERM = LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' )
      LSCAL = LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' )
C
      IF ( .NOT.LPERM .AND. .NOT.LSCAL
     $     .AND. .NOT.LSAME( JOB, 'N' ) ) THEN
         INFO = -1
      ELSE IF ( N.LT.0 ) THEN
         INFO = -2
      ELSE IF ( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF ( LDQG.LT.MAX( 1, N ) ) THEN
         INFO = -6
      END IF
C
C     Return if there were illegal values.
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB04DD', -INFO )
         RETURN
      END IF
C
      ILO = 1
C
C     Quick return if possible.
C
      IF ( N.EQ.0 )
     $   RETURN
      IF ( .NOT.LPERM .AND. .NOT.LSCAL ) THEN
         DO 10  I = 1, N
            SCALE(I) = ONE
   10    CONTINUE
         RETURN
      END IF
C
C     Permutations to isolate eigenvalues if possible.
C
      IF ( LPERM ) THEN
         ILOOLD = 0
C        WHILE ( ILO.NE.ILOOLD )
   20    IF ( ILO.NE.ILOOLD ) THEN
            ILOOLD = ILO
C
C           Scan columns ILO .. N.
C
            I = ILO
C           WHILE ( I.LE.N .AND. ILO.EQ.ILOOLD )
   30       IF ( I.LE.N .AND. ILO.EQ.ILOOLD ) THEN
               DO 40  J = ILO, I-1
                  IF ( A(J,I).NE.ZERO ) THEN
                     I = I + 1
                     GOTO 30
                  END IF
   40          CONTINUE
               DO 50  J = I+1, N
                  IF ( A(J,I).NE.ZERO ) THEN
                     I = I + 1
                     GOTO 30
                  END IF
   50          CONTINUE
               DO 60  J = ILO, I
                  IF ( QG(I,J).NE.ZERO ) THEN
                     I = I + 1
                     GOTO 30
                  END IF
   60          CONTINUE
               DO 70  J = I+1, N
                  IF ( QG(J,I).NE.ZERO ) THEN
                     I = I + 1
                     GOTO 30
                  END IF
   70          CONTINUE
C
C              Exchange columns/rows ILO <-> I.
C
               SCALE( ILO ) = DBLE( I )
               IF ( ILO.NE.I ) THEN
C
                  CALL DSWAP( N, A(1,ILO), 1, A(1,I), 1 )
                  CALL DSWAP( N-ILO+1, A(ILO,ILO), LDA, A(I,ILO), LDA )
C
                  CALL DSWAP( 1, QG(I,ILO), LDQG, QG(ILO,ILO), LDQG )
                  CALL DSWAP( N-I+1, QG(I,I), 1, QG(I,ILO), 1 )
                  CALL DSWAP( I-ILO, QG(ILO,ILO), 1, QG(I,ILO), LDQG )
C
                  CALL DSWAP( ILO, QG(1,I+1), 1, QG(1,ILO+1), 1 )
                  CALL DSWAP( N-I+1, QG(I,I+1), LDQG, QG(ILO,I+1),
     $                        LDQG )
                  CALL DSWAP( I-ILO, QG(ILO,ILO+1), LDQG, QG(ILO,I+1),
     $                        1 )
               END IF
               ILO = ILO + 1
            END IF
C           END WHILE 30
C
C           Scan columns N+ILO .. 2*N.
C
            I = ILO
C           WHILE ( I.LE.N .AND. ILO.EQ.ILOOLD )
   80       IF ( I.LE.N .AND. ILO.EQ.ILOOLD ) THEN
               DO 90  J = ILO, I-1
                  IF ( A(I,J).NE.ZERO ) THEN
                     I = I + 1
                     GOTO 80
                  END IF
   90          CONTINUE
               DO 100  J = I+1, N
                  IF ( A(I,J).NE.ZERO ) THEN
                     I = I + 1
                     GOTO 80
                  END IF
  100          CONTINUE
               DO 110  J = ILO, I
                  IF ( QG(J,I+1).NE.ZERO ) THEN
                     I = I + 1
                     GOTO 80
                  END IF
  110          CONTINUE
               DO 120  J = I+1, N
                  IF ( QG(I,J+1).NE.ZERO ) THEN
                     I = I + 1
                     GOTO 80
                  END IF
  120          CONTINUE
               SCALE( ILO ) = DBLE( N+I )
C
C              Exchange columns/rows I <-> I+N with a symplectic
C              generalized permutation.
C
               CALL DSWAP( I-ILO, A(I,ILO), LDA, QG(I,ILO), LDQG )
               CALL DSCAL( I-ILO, -ONE, A(I,ILO), LDA )
               CALL DSWAP( N-I, A(I,I+1), LDA, QG(I+1,I), 1 )
               CALL DSCAL( N-I, -ONE, A(I,I+1), LDA )
               CALL DSWAP( I-1, A(1,I), 1, QG(1,I+1), 1 )
               CALL DSCAL( I-1, -ONE, A(1,I), 1 )
               CALL DSWAP( N-I, A(I+1,I), 1, QG(I,I+2), LDQG )
               CALL DSCAL( N-I, -ONE, A(I+1,I), 1 )
               A(I,I) = -A(I,I)
               TEMP   = QG(I,I)
               QG(I,I) = -QG(I,I+1)
               QG(I,I+1) = -TEMP
C
C              Exchange columns/rows ILO <-> I.
C
               IF ( ILO.NE.I ) THEN
C
                  CALL DSWAP( N, A(1,ILO), 1, A(1,I), 1 )
                  CALL DSWAP( N-ILO+1, A(ILO,ILO), LDA, A(I,ILO), LDA )
C
                  CALL DSWAP( 1, QG(I,ILO), LDQG, QG(ILO,ILO), LDQG )
                  CALL DSWAP( N-I+1, QG(I,I), 1, QG(I,ILO), 1 )
                  CALL DSWAP( I-ILO, QG(ILO,ILO), 1, QG(I,ILO), LDQG )
C
                  CALL DSWAP( ILO, QG(1,I+1), 1, QG(1,ILO+1), 1 )
                  CALL DSWAP( N-I+1, QG(I,I+1), LDQG, QG(ILO,I+1),
     $                        LDQG )
                  CALL DSWAP( I-ILO, QG(ILO,ILO+1), LDQG, QG(ILO,I+1),
     $                        1 )
               END IF
               ILO = ILO + 1
            END IF
C           END WHILE 80
            GOTO 20
         END IF
C        END WHILE 20
      END IF
C
      DO 130  I = ILO, N
         SCALE(I) = ONE
  130 CONTINUE
C
C     Scale to reduce the 1-norm of the remaining blocks.
C
      IF ( LSCAL ) THEN
         SCLFAC = DLAMCH( 'B' )
         SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
         SFMAX1 = ONE / SFMIN1
         SFMIN2 = SFMIN1*SCLFAC
         SFMAX2 = ONE / SFMIN2
C
C        Scale the rows and columns one at a time to minimize the
C        1-norm of the remaining Hamiltonian submatrix.
C        Stop when the 1-norm is very roughly minimal.
C
  140    CONTINUE
            CONV = .TRUE.
            DO 170 I = ILO, N
C
C              Compute 1-norm of row and column I without diagonal
C              elements.
C
               R = DASUM( I-ILO, A(I,ILO), LDA ) +
     $             DASUM( N-I,   A(I,I+1), LDA ) +
     $             DASUM( I-ILO, QG(ILO,I+1), 1 ) +
     $             DASUM( N-I,   QG(I,I+2), LDQG )
               C = DASUM( I-ILO, A(ILO,I), 1 ) +
     $             DASUM( N-I,   A(I+1,I), 1 ) +
     $             DASUM( I-ILO, QG(I,ILO), LDQG ) +
     $             DASUM( N-I,   QG(I+1,I), 1 )
               QII = ABS( QG(I,I) )
               GII = ABS( QG(I,I+1) )
C
C              Compute inf-norms of row and column I.
C
               IC = IDAMAX( N-ILO+1, A(I,ILO), LDA )
               MAXR = ABS( A(I,IC+ILO-1) )
               IF ( I.GT.1 ) THEN
                  IC = IDAMAX( I-1, QG(1,I+1), 1 )
                  MAXR = MAX( MAXR, ABS( QG(IC,I+1) ) )
               END IF
               IF ( N.GT.I ) THEN
                  IC = IDAMAX( N-I, QG(I,I+2), LDQG )
                  MAXR = MAX( MAXR, ABS( QG(I,IC+I+1) ) )
               END IF
               IC = IDAMAX( N, A(1,I), 1 )
               MAXC = ABS( A(IC,I) )
               IF ( I.GT.ILO ) THEN
                  IC = IDAMAX( I-ILO, QG(I,ILO), LDQG )
                  MAXC = MAX( MAXC, ABS( QG(I,IC+ILO-1) ) )
               END IF
               IF ( N.GT.I ) THEN
                  IC = IDAMAX( N-I, QG(I+1,I), 1 )
                  MAXC = MAX( MAXC, ABS( QG(IC+I,I) ) )
               END IF
               IF ( ( C + QII ).EQ.ZERO .OR. ( R + GII ).EQ.ZERO )
     $            GO TO 170
C
               F = ONE
  150          CONTINUE
               IF ( ( ( R + GII/SCLFAC )/SCLFAC ).GE.
     $              ( ( C + QII*SCLFAC )*SCLFAC ) .AND.
     $              MAX( F*SCLFAC, C*SCLFAC, MAXC*SCLFAC,
     $                   QII*SCLFAC*SCLFAC ).LT.SFMAX2 .AND.
     $              MIN( ( R + GII/SCLFAC )/SCLFAC, MAX( MAXR/SCLFAC,
     $                   GII/SCLFAC/SCLFAC ) ).GT.SFMIN2 ) THEN
                  F = F*SCLFAC
                  C = C*SCLFAC
                  QII = QII*SCLFAC*SCLFAC
                  R = R / SCLFAC
                  GII = GII/SCLFAC/SCLFAC
                  MAXC = MAXC*SCLFAC
                  MAXR = MAXR / SCLFAC
                  GO TO 150
               END IF
C
  160          CONTINUE
               IF ( ( ( R + GII*SCLFAC )*SCLFAC ).LE.
     $              ( ( C + QII/SCLFAC )/SCLFAC ) .AND.
     $              MAX( R*SCLFAC, MAXR*SCLFAC,
     $                   GII*SCLFAC*SCLFAC ).LT.SFMAX2 .AND.
     $              MIN( F/SCLFAC, ( C + QII/SCLFAC )/SCLFAC,
     $                   MAX( MAXC/SCLFAC, QII/SCLFAC/SCLFAC ) )
     $                   .GT.SFMIN2 ) THEN
                  F = F / SCLFAC
                  C = C / SCLFAC
                  QII = QII/SCLFAC/SCLFAC
                  R = R*SCLFAC
                  GII = GII*SCLFAC*SCLFAC
                  MAXC = MAXC/SCLFAC
                  MAXR = MAXR*SCLFAC
                  GO TO 160
               END IF
C
C              Now balance if necessary.
C
               IF ( F.NE.ONE ) THEN
                  IF ( F.LT.ONE .AND. SCALE(I).LT.ONE ) THEN
                     IF ( F*SCALE(I).LE.SFMIN1 )
     $                  GO TO 170
                  END IF
                  IF ( F.GT.ONE .AND. SCALE(I).GT.ONE ) THEN
                     IF ( SCALE(I).GE.SFMAX1 / F )
     $                  GO TO 170
                  END IF
                  CONV = .FALSE.
                  SCALE(I) = SCALE(I)*F
                  CALL DRSCL( I-ILO, F, A(I,ILO), LDA )
                  CALL DRSCL( N-I, F, A(I,I+1), LDA )
                  CALL DSCAL( I-1, F, A(1,I), 1 )
                  CALL DSCAL( N-I, F, A(I+1,I), 1 )
                  CALL DRSCL( I-1, F, QG(1,I+1), 1 )
                  QG(I,I+1) = QG(I,I+1) / F / F
                  CALL DRSCL( N-I, F, QG(I,I+1+1), LDQG )
                  CALL DSCAL( I-ILO, F, QG(I,ILO), LDQG )
                  QG(I,I)   = QG(I,I) * F * F
                  CALL DSCAL( N-I, F, QG(I+1,I), 1 )
               END IF
  170       CONTINUE
         IF ( .NOT.CONV ) GO TO 140
      END IF
      RETURN
C *** Last line of MB04DD ***
      END