1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
SUBROUTINE MB04DD( JOB, N, A, LDA, QG, LDQG, ILO, SCALE, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To balance a real Hamiltonian matrix,
C
C [ A G ]
C H = [ T ] ,
C [ Q -A ]
C
C where A is an N-by-N matrix and G, Q are N-by-N symmetric
C matrices. This involves, first, permuting H by a symplectic
C similarity transformation to isolate eigenvalues in the first
C 1:ILO-1 elements on the diagonal of A; and second, applying a
C diagonal similarity transformation to rows and columns
C ILO:2*N-ILO+1 to make the rows and columns as close in 1-norm
C as possible. Both steps are optional.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the operations to be performed on H:
C = 'N': none, set ILO = 1, SCALE(I) = 1.0, I = 1 .. N;
C = 'P': permute only;
C = 'S': scale only;
C = 'B': both permute and scale.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A.
C On exit, the leading N-by-N part of this array contains
C the matrix A of the balanced Hamiltonian. In particular,
C the lower triangular part of the first ILO-1 columns of A
C is zero.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C QG (input/output) DOUBLE PRECISION array, dimension
C (LDQG,N+1)
C On entry, the leading N-by-N+1 part of this array must
C contain the lower triangular part of the matrix Q and
C the upper triangular part of the matrix G.
C On exit, the leading N-by-N+1 part of this array contains
C the lower and upper triangular parts of the matrices Q and
C G, respectively, of the balanced Hamiltonian. In
C particular, the lower triangular and diagonal part of the
C first ILO-1 columns of QG is zero.
C
C LDQG INTEGER
C The leading dimension of the array QG. LDQG >= MAX(1,N).
C
C ILO (output) INTEGER
C ILO-1 is the number of deflated eigenvalues in the
C balanced Hamiltonian matrix.
C
C SCALE (output) DOUBLE PRECISION array of dimension (N)
C Details of the permutations and scaling factors applied to
C H. For j = 1,...,ILO-1 let P(j) = SCALE(j). If P(j) <= N,
C then rows and columns P(j) and P(j)+N are interchanged
C with rows and columns j and j+N, respectively. If
C P(j) > N, then row and column P(j)-N are interchanged with
C row and column j+N by a generalized symplectic
C permutation. For j = ILO,...,N the j-th element of SCALE
C contains the factor of the scaling applied to row and
C column j.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C REFERENCES
C
C [1] Benner, P.
C Symplectic balancing of Hamiltonian matrices.
C SIAM J. Sci. Comput., 22 (5), pp. 1885-1904, 2000.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, June 2008 (SLICOT version of the HAPACK routine DHABAL).
C
C KEYWORDS
C
C Balancing, Hamiltonian matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER JOB
INTEGER ILO, INFO, LDA, LDQG, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), QG(LDQG,*), SCALE(*)
C .. Local Scalars ..
LOGICAL CONV, LPERM, LSCAL
INTEGER I, IC, ILOOLD, J
DOUBLE PRECISION C, F, GII, MAXC, MAXR, QII, R, SCLFAC,
$ SFMAX1, SFMAX2, SFMIN1, SFMIN2, TEMP
C .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DASUM, DLAMCH
EXTERNAL DASUM, DLAMCH, IDAMAX, LSAME
C .. External Subroutines ..
EXTERNAL DRSCL, DSCAL, DSWAP, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
C
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
INFO = 0
LPERM = LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' )
LSCAL = LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' )
C
IF ( .NOT.LPERM .AND. .NOT.LSCAL
$ .AND. .NOT.LSAME( JOB, 'N' ) ) THEN
INFO = -1
ELSE IF ( N.LT.0 ) THEN
INFO = -2
ELSE IF ( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF ( LDQG.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
C
C Return if there were illegal values.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB04DD', -INFO )
RETURN
END IF
C
ILO = 1
C
C Quick return if possible.
C
IF ( N.EQ.0 )
$ RETURN
IF ( .NOT.LPERM .AND. .NOT.LSCAL ) THEN
DO 10 I = 1, N
SCALE(I) = ONE
10 CONTINUE
RETURN
END IF
C
C Permutations to isolate eigenvalues if possible.
C
IF ( LPERM ) THEN
ILOOLD = 0
C WHILE ( ILO.NE.ILOOLD )
20 IF ( ILO.NE.ILOOLD ) THEN
ILOOLD = ILO
C
C Scan columns ILO .. N.
C
I = ILO
C WHILE ( I.LE.N .AND. ILO.EQ.ILOOLD )
30 IF ( I.LE.N .AND. ILO.EQ.ILOOLD ) THEN
DO 40 J = ILO, I-1
IF ( A(J,I).NE.ZERO ) THEN
I = I + 1
GOTO 30
END IF
40 CONTINUE
DO 50 J = I+1, N
IF ( A(J,I).NE.ZERO ) THEN
I = I + 1
GOTO 30
END IF
50 CONTINUE
DO 60 J = ILO, I
IF ( QG(I,J).NE.ZERO ) THEN
I = I + 1
GOTO 30
END IF
60 CONTINUE
DO 70 J = I+1, N
IF ( QG(J,I).NE.ZERO ) THEN
I = I + 1
GOTO 30
END IF
70 CONTINUE
C
C Exchange columns/rows ILO <-> I.
C
SCALE( ILO ) = DBLE( I )
IF ( ILO.NE.I ) THEN
C
CALL DSWAP( N, A(1,ILO), 1, A(1,I), 1 )
CALL DSWAP( N-ILO+1, A(ILO,ILO), LDA, A(I,ILO), LDA )
C
CALL DSWAP( 1, QG(I,ILO), LDQG, QG(ILO,ILO), LDQG )
CALL DSWAP( N-I+1, QG(I,I), 1, QG(I,ILO), 1 )
CALL DSWAP( I-ILO, QG(ILO,ILO), 1, QG(I,ILO), LDQG )
C
CALL DSWAP( ILO, QG(1,I+1), 1, QG(1,ILO+1), 1 )
CALL DSWAP( N-I+1, QG(I,I+1), LDQG, QG(ILO,I+1),
$ LDQG )
CALL DSWAP( I-ILO, QG(ILO,ILO+1), LDQG, QG(ILO,I+1),
$ 1 )
END IF
ILO = ILO + 1
END IF
C END WHILE 30
C
C Scan columns N+ILO .. 2*N.
C
I = ILO
C WHILE ( I.LE.N .AND. ILO.EQ.ILOOLD )
80 IF ( I.LE.N .AND. ILO.EQ.ILOOLD ) THEN
DO 90 J = ILO, I-1
IF ( A(I,J).NE.ZERO ) THEN
I = I + 1
GOTO 80
END IF
90 CONTINUE
DO 100 J = I+1, N
IF ( A(I,J).NE.ZERO ) THEN
I = I + 1
GOTO 80
END IF
100 CONTINUE
DO 110 J = ILO, I
IF ( QG(J,I+1).NE.ZERO ) THEN
I = I + 1
GOTO 80
END IF
110 CONTINUE
DO 120 J = I+1, N
IF ( QG(I,J+1).NE.ZERO ) THEN
I = I + 1
GOTO 80
END IF
120 CONTINUE
SCALE( ILO ) = DBLE( N+I )
C
C Exchange columns/rows I <-> I+N with a symplectic
C generalized permutation.
C
CALL DSWAP( I-ILO, A(I,ILO), LDA, QG(I,ILO), LDQG )
CALL DSCAL( I-ILO, -ONE, A(I,ILO), LDA )
CALL DSWAP( N-I, A(I,I+1), LDA, QG(I+1,I), 1 )
CALL DSCAL( N-I, -ONE, A(I,I+1), LDA )
CALL DSWAP( I-1, A(1,I), 1, QG(1,I+1), 1 )
CALL DSCAL( I-1, -ONE, A(1,I), 1 )
CALL DSWAP( N-I, A(I+1,I), 1, QG(I,I+2), LDQG )
CALL DSCAL( N-I, -ONE, A(I+1,I), 1 )
A(I,I) = -A(I,I)
TEMP = QG(I,I)
QG(I,I) = -QG(I,I+1)
QG(I,I+1) = -TEMP
C
C Exchange columns/rows ILO <-> I.
C
IF ( ILO.NE.I ) THEN
C
CALL DSWAP( N, A(1,ILO), 1, A(1,I), 1 )
CALL DSWAP( N-ILO+1, A(ILO,ILO), LDA, A(I,ILO), LDA )
C
CALL DSWAP( 1, QG(I,ILO), LDQG, QG(ILO,ILO), LDQG )
CALL DSWAP( N-I+1, QG(I,I), 1, QG(I,ILO), 1 )
CALL DSWAP( I-ILO, QG(ILO,ILO), 1, QG(I,ILO), LDQG )
C
CALL DSWAP( ILO, QG(1,I+1), 1, QG(1,ILO+1), 1 )
CALL DSWAP( N-I+1, QG(I,I+1), LDQG, QG(ILO,I+1),
$ LDQG )
CALL DSWAP( I-ILO, QG(ILO,ILO+1), LDQG, QG(ILO,I+1),
$ 1 )
END IF
ILO = ILO + 1
END IF
C END WHILE 80
GOTO 20
END IF
C END WHILE 20
END IF
C
DO 130 I = ILO, N
SCALE(I) = ONE
130 CONTINUE
C
C Scale to reduce the 1-norm of the remaining blocks.
C
IF ( LSCAL ) THEN
SCLFAC = DLAMCH( 'B' )
SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
SFMAX1 = ONE / SFMIN1
SFMIN2 = SFMIN1*SCLFAC
SFMAX2 = ONE / SFMIN2
C
C Scale the rows and columns one at a time to minimize the
C 1-norm of the remaining Hamiltonian submatrix.
C Stop when the 1-norm is very roughly minimal.
C
140 CONTINUE
CONV = .TRUE.
DO 170 I = ILO, N
C
C Compute 1-norm of row and column I without diagonal
C elements.
C
R = DASUM( I-ILO, A(I,ILO), LDA ) +
$ DASUM( N-I, A(I,I+1), LDA ) +
$ DASUM( I-ILO, QG(ILO,I+1), 1 ) +
$ DASUM( N-I, QG(I,I+2), LDQG )
C = DASUM( I-ILO, A(ILO,I), 1 ) +
$ DASUM( N-I, A(I+1,I), 1 ) +
$ DASUM( I-ILO, QG(I,ILO), LDQG ) +
$ DASUM( N-I, QG(I+1,I), 1 )
QII = ABS( QG(I,I) )
GII = ABS( QG(I,I+1) )
C
C Compute inf-norms of row and column I.
C
IC = IDAMAX( N-ILO+1, A(I,ILO), LDA )
MAXR = ABS( A(I,IC+ILO-1) )
IF ( I.GT.1 ) THEN
IC = IDAMAX( I-1, QG(1,I+1), 1 )
MAXR = MAX( MAXR, ABS( QG(IC,I+1) ) )
END IF
IF ( N.GT.I ) THEN
IC = IDAMAX( N-I, QG(I,I+2), LDQG )
MAXR = MAX( MAXR, ABS( QG(I,IC+I+1) ) )
END IF
IC = IDAMAX( N, A(1,I), 1 )
MAXC = ABS( A(IC,I) )
IF ( I.GT.ILO ) THEN
IC = IDAMAX( I-ILO, QG(I,ILO), LDQG )
MAXC = MAX( MAXC, ABS( QG(I,IC+ILO-1) ) )
END IF
IF ( N.GT.I ) THEN
IC = IDAMAX( N-I, QG(I+1,I), 1 )
MAXC = MAX( MAXC, ABS( QG(IC+I,I) ) )
END IF
IF ( ( C + QII ).EQ.ZERO .OR. ( R + GII ).EQ.ZERO )
$ GO TO 170
C
F = ONE
150 CONTINUE
IF ( ( ( R + GII/SCLFAC )/SCLFAC ).GE.
$ ( ( C + QII*SCLFAC )*SCLFAC ) .AND.
$ MAX( F*SCLFAC, C*SCLFAC, MAXC*SCLFAC,
$ QII*SCLFAC*SCLFAC ).LT.SFMAX2 .AND.
$ MIN( ( R + GII/SCLFAC )/SCLFAC, MAX( MAXR/SCLFAC,
$ GII/SCLFAC/SCLFAC ) ).GT.SFMIN2 ) THEN
F = F*SCLFAC
C = C*SCLFAC
QII = QII*SCLFAC*SCLFAC
R = R / SCLFAC
GII = GII/SCLFAC/SCLFAC
MAXC = MAXC*SCLFAC
MAXR = MAXR / SCLFAC
GO TO 150
END IF
C
160 CONTINUE
IF ( ( ( R + GII*SCLFAC )*SCLFAC ).LE.
$ ( ( C + QII/SCLFAC )/SCLFAC ) .AND.
$ MAX( R*SCLFAC, MAXR*SCLFAC,
$ GII*SCLFAC*SCLFAC ).LT.SFMAX2 .AND.
$ MIN( F/SCLFAC, ( C + QII/SCLFAC )/SCLFAC,
$ MAX( MAXC/SCLFAC, QII/SCLFAC/SCLFAC ) )
$ .GT.SFMIN2 ) THEN
F = F / SCLFAC
C = C / SCLFAC
QII = QII/SCLFAC/SCLFAC
R = R*SCLFAC
GII = GII*SCLFAC*SCLFAC
MAXC = MAXC/SCLFAC
MAXR = MAXR*SCLFAC
GO TO 160
END IF
C
C Now balance if necessary.
C
IF ( F.NE.ONE ) THEN
IF ( F.LT.ONE .AND. SCALE(I).LT.ONE ) THEN
IF ( F*SCALE(I).LE.SFMIN1 )
$ GO TO 170
END IF
IF ( F.GT.ONE .AND. SCALE(I).GT.ONE ) THEN
IF ( SCALE(I).GE.SFMAX1 / F )
$ GO TO 170
END IF
CONV = .FALSE.
SCALE(I) = SCALE(I)*F
CALL DRSCL( I-ILO, F, A(I,ILO), LDA )
CALL DRSCL( N-I, F, A(I,I+1), LDA )
CALL DSCAL( I-1, F, A(1,I), 1 )
CALL DSCAL( N-I, F, A(I+1,I), 1 )
CALL DRSCL( I-1, F, QG(1,I+1), 1 )
QG(I,I+1) = QG(I,I+1) / F / F
CALL DRSCL( N-I, F, QG(I,I+1+1), LDQG )
CALL DSCAL( I-ILO, F, QG(I,ILO), LDQG )
QG(I,I) = QG(I,I) * F * F
CALL DSCAL( N-I, F, QG(I+1,I), 1 )
END IF
170 CONTINUE
IF ( .NOT.CONV ) GO TO 140
END IF
RETURN
C *** Last line of MB04DD ***
END
|