1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
SUBROUTINE MB04DY( JOBSCL, N, A, LDA, QG, LDQG, D, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To perform a symplectic scaling on the Hamiltonian matrix
C
C ( A G )
C H = ( T ), (1)
C ( Q -A )
C
C i.e., perform either the symplectic scaling transformation
C
C -1
C ( A' G' ) ( D 0 ) ( A G ) ( D 0 )
C H' <-- ( T ) = ( ) ( T ) ( -1 ), (2)
C ( Q' -A' ) ( 0 D ) ( Q -A ) ( 0 D )
C
C where D is a diagonal scaling matrix, or the symplectic norm
C scaling transformation
C
C ( A'' G'' ) 1 ( A G/tau )
C H'' <-- ( T ) = --- ( T ), (3)
C ( Q'' -A'' ) tau ( tau Q -A )
C
C where tau is a real scalar. Note that if tau is not equal to 1,
C then (3) is NOT a similarity transformation. The eigenvalues
C of H are then tau times the eigenvalues of H''.
C
C For symplectic scaling (2), D is chosen to give the rows and
C columns of A' approximately equal 1-norms and to give Q' and G'
C approximately equal norms. (See METHOD below for details.) For
C norm scaling, tau = MAX(1, ||A||, ||G||, ||Q||) where ||.||
C denotes the 1-norm (column sum norm).
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBSCL CHARACTER*1
C Indicates which scaling strategy is used, as follows:
C = 'S' : do the symplectic scaling (2);
C = '1' or 'O': do the 1-norm scaling (3);
C = 'N' : do nothing; set INFO and return.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, G, and Q. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On input, if JOBSCL <> 'N', the leading N-by-N part of
C this array must contain the upper left block A of the
C Hamiltonian matrix H in (1).
C On output, if JOBSCL <> 'N', the leading N-by-N part of
C this array contains the leading N-by-N part of the scaled
C Hamiltonian matrix H' in (2) or H'' in (3), depending on
C the setting of JOBSCL.
C If JOBSCL = 'N', this array is not referenced.
C
C LDA INTEGER
C The leading dimension of the array A.
C LDA >= MAX(1,N), if JOBSCL <> 'N';
C LDA >= 1, if JOBSCL = 'N'.
C
C QG (input/output) DOUBLE PRECISION array, dimension
C (LDQG,N+1)
C On input, if JOBSCL <> 'N', the leading N-by-N lower
C triangular part of this array must contain the lower
C triangle of the lower left symmetric block Q of the
C Hamiltonian matrix H in (1), and the N-by-N upper
C triangular part of the submatrix in the columns 2 to N+1
C of this array must contain the upper triangle of the upper
C right symmetric block G of H in (1).
C So, if i >= j, then Q(i,j) = Q(j,i) is stored in QG(i,j)
C and G(i,j) = G(j,i) is stored in QG(j,i+1).
C On output, if JOBSCL <> 'N', the leading N-by-N lower
C triangular part of this array contains the lower triangle
C of the lower left symmetric block Q' or Q'', and the
C N-by-N upper triangular part of the submatrix in the
C columns 2 to N+1 of this array contains the upper triangle
C of the upper right symmetric block G' or G'' of the scaled
C Hamiltonian matrix H' in (2) or H'' in (3), depending on
C the setting of JOBSCL.
C If JOBSCL = 'N', this array is not referenced.
C
C LDQG INTEGER
C The leading dimension of the array QG.
C LDQG >= MAX(1,N), if JOBSCL <> 'N';
C LDQG >= 1, if JOBSCL = 'N'.
C
C D (output) DOUBLE PRECISION array, dimension (nd)
C If JOBSCL = 'S', then nd = N and D contains the diagonal
C elements of the diagonal scaling matrix in (2).
C If JOBSCL = '1' or 'O', then nd = 1 and D(1) is set to tau
C from (3). In this case, no other elements of D are
C referenced.
C If JOBSCL = 'N', this array is not referenced.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N)
C If JOBSCL = 'N', this array is not referenced.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, then the i-th argument had an illegal
C value.
C
C METHOD
C
C 1. Symplectic scaling (JOBSCL = 'S'):
C
C First, LAPACK subroutine DGEBAL is used to equilibrate the 1-norms
C of the rows and columns of A using a diagonal scaling matrix D_A.
C Then, H is similarily transformed by the symplectic diagonal
C matrix D1 = diag(D_A,D_A**(-1)). Next, the off-diagonal blocks of
C the resulting Hamiltonian matrix are equilibrated in the 1-norm
C using the symplectic diagonal matrix D2 of the form
C
C ( I/rho 0 )
C D2 = ( )
C ( 0 rho*I )
C
C where rho is a real scalar. Thus, in (2), D = D1*D2.
C
C 2. Norm scaling (JOBSCL = '1' or 'O'):
C
C The norm of the matrices A and G of (1) is reduced by setting
C A := A/tau and G := G/(tau**2) where tau is the power of the
C base of the arithmetic closest to MAX(1, ||A||, ||G||, ||Q||) and
C ||.|| denotes the 1-norm.
C
C REFERENCES
C
C [1] Benner, P., Byers, R., and Barth, E.
C Fortran 77 Subroutines for Computing the Eigenvalues of
C Hamiltonian Matrices. I: The Square-Reduced Method.
C ACM Trans. Math. Software, 26, 1, pp. 49-77, 2000.
C
C NUMERICAL ASPECTS
C
C For symplectic scaling, the complexity of the used algorithms is
C hard to estimate and depends upon how well the rows and columns of
C A in (1) are equilibrated. In one sweep, each row/column of A is
C scaled once, i.e., the cost of one sweep is N**2 multiplications.
C Usually, 3-6 sweeps are enough to equilibrate the norms of the
C rows and columns of a matrix. Roundoff errors are possible as
C LAPACK routine DGEBAL does NOT use powers of the machine base for
C scaling. The second stage (equilibrating ||G|| and ||Q||) requires
C N**2 multiplications.
C For norm scaling, 3*N**2 + O(N) multiplications are required and
C NO rounding errors occur as all multiplications are performed with
C powers of the machine base.
C
C CONTRIBUTOR
C
C P. Benner, Universitaet Bremen, Germany, and
C R. Byers, University of Kansas, Lawrence, USA.
C Aug. 1998, routine DHABL.
C V. Sima, Research Institute for Informatics, Bucharest, Romania,
C Oct. 1998, SLICOT Library version.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 2009.
C
C KEYWORDS
C
C Balancing, Hamiltonian matrix, norms, symplectic similarity
C transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDQG, N
CHARACTER JOBSCL
C ..
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), D(*), DWORK(*), QG(LDQG,*)
C ..
C .. Local Scalars ..
DOUBLE PRECISION ANRM, BASE, EPS, GNRM, OFL, QNRM,
$ RHO, SFMAX, SFMIN, TAU, UFL, Y
INTEGER I, IERR, IHI, ILO, J
LOGICAL NONE, NORM, SYMP
C ..
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
LOGICAL LSAME
EXTERNAL DLAMCH, DLANGE, DLANSY, LSAME
C ..
C .. External Subroutines ..
EXTERNAL DGEBAL, DLABAD, DLASCL, DRSCL, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
C ..
C .. Executable Statements ..
C
INFO = 0
SYMP = LSAME( JOBSCL, 'S' )
NORM = LSAME( JOBSCL, '1' ) .OR. LSAME( JOBSCL, 'O' )
NONE = LSAME( JOBSCL, 'N' )
C
IF( .NOT.SYMP .AND. .NOT.NORM .AND. .NOT.NONE ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.1 .OR. ( .NOT.NONE .AND. LDA.LT.N ) ) THEN
INFO = -4
ELSE IF( LDQG.LT.1 .OR. ( .NOT.NONE .AND. LDQG.LT.N ) ) THEN
INFO = -6
END IF
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB04DY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. NONE )
$ RETURN
C
C Set some machine dependant constants.
C
BASE = DLAMCH( 'Base' )
EPS = DLAMCH( 'Precision' )
UFL = DLAMCH( 'Safe minimum' )
OFL = ONE/UFL
CALL DLABAD( UFL, OFL )
SFMAX = ( EPS/BASE )/UFL
SFMIN = ONE/SFMAX
C
IF ( NORM ) THEN
C
C Compute norms.
C
ANRM = DLANGE( '1-norm', N, N, A, LDA, DWORK )
GNRM = DLANSY( '1-norm', 'Upper', N, QG(1,2), LDQG, DWORK )
QNRM = DLANSY( '1-norm', 'Lower', N, QG, LDQG, DWORK )
Y = MAX( ONE, ANRM, GNRM, QNRM )
TAU = ONE
C
C WHILE ( TAU < Y ) DO
10 CONTINUE
IF ( ( TAU.LT.Y ) .AND. ( TAU.LT.SQRT( SFMAX ) ) ) THEN
TAU = TAU*BASE
GO TO 10
END IF
C END WHILE 10
IF ( TAU.GT.ONE ) THEN
IF ( ABS( TAU/BASE - Y ).LT.ABS( TAU - Y ) )
$ TAU = TAU/BASE
CALL DLASCL( 'General', 0, 0, TAU, ONE, N, N, A, LDA, IERR )
CALL DLASCL( 'Upper', 0, 0, TAU, ONE, N, N, QG(1,2), LDQG,
$ IERR )
CALL DLASCL( 'Upper', 0, 0, TAU, ONE, N, N, QG(1,2), LDQG,
$ IERR )
END IF
C
D(1) = TAU
C
ELSE
CALL DGEBAL( 'Scale', N, A, LDA, ILO, IHI, D, IERR )
C
DO 30 J = 1, N
C
DO 20 I = J, N
QG(I,J) = QG(I,J)*D(J)*D(I)
20 CONTINUE
C
30 CONTINUE
C
DO 50 J = 2, N + 1
C
DO 40 I = 1, J - 1
QG(I,J) = QG(I,J)/D(J-1)/D(I)
40 CONTINUE
C
50 CONTINUE
C
GNRM = DLANSY( '1-norm', 'Upper', N, QG(1,2), LDQG, DWORK )
QNRM = DLANSY( '1-norm', 'Lower', N, QG, LDQG, DWORK )
IF ( GNRM.EQ.ZERO ) THEN
IF ( QNRM.EQ.ZERO ) THEN
RHO = ONE
ELSE
RHO = SFMAX
END IF
ELSE IF ( QNRM.EQ.ZERO ) THEN
RHO = SFMIN
ELSE
RHO = SQRT( QNRM )/SQRT( GNRM )
END IF
C
CALL DLASCL( 'Lower', 0, 0, RHO, ONE, N, N, QG, LDQG, IERR )
CALL DLASCL( 'Upper', 0, 0, ONE, RHO, N, N, QG(1,2), LDQG,
$ IERR )
CALL DRSCL( N, SQRT( RHO ), D, 1 )
END IF
C
RETURN
C *** Last line of MB04DY ***
END
|