File: MB04DY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (329 lines) | stat: -rw-r--r-- 11,914 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
      SUBROUTINE MB04DY( JOBSCL, N, A, LDA, QG, LDQG, D, DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To perform a symplectic scaling on the Hamiltonian matrix
C
C              ( A    G  )
C          H = (       T ),                                          (1)
C              ( Q   -A  )
C
C     i.e., perform either the symplectic scaling transformation
C
C                                   -1
C                 ( A'   G'  )   ( D   0 ) ( A   G  ) ( D  0   )
C          H' <-- (        T ) = (       ) (      T ) (     -1 ),    (2)
C                 ( Q'  -A'  )   ( 0   D ) ( Q  -A  ) ( 0  D   )
C
C     where D is a diagonal scaling matrix, or the symplectic norm
C     scaling transformation
C
C                  ( A''   G''  )    1  (   A   G/tau )
C          H'' <-- (          T ) = --- (           T ),             (3)
C                  ( Q''  -A''  )   tau ( tau Q   -A  )
C
C     where tau is a real scalar.  Note that if tau is not equal to 1,
C     then (3) is NOT a similarity transformation.  The eigenvalues
C     of H are then tau times the eigenvalues of H''.
C
C     For symplectic scaling (2), D is chosen to give the rows and
C     columns of A' approximately equal 1-norms and to give Q' and G'
C     approximately equal norms.  (See METHOD below for details.) For
C     norm scaling, tau = MAX(1, ||A||, ||G||, ||Q||) where ||.||
C     denotes the 1-norm (column sum norm).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBSCL  CHARACTER*1
C             Indicates which scaling strategy is used, as follows:
C             = 'S'       :  do the symplectic scaling (2);
C             = '1' or 'O':  do the 1-norm scaling (3);
C             = 'N'       :  do nothing; set INFO and return.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A, G, and Q.  N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On input, if JOBSCL <> 'N', the leading N-by-N part of
C             this array must contain the upper left block A of the
C             Hamiltonian matrix H in (1).
C             On output, if JOBSCL <> 'N', the leading N-by-N part of
C             this array contains the leading N-by-N part of the scaled
C             Hamiltonian matrix H' in (2) or H'' in (3), depending on
C             the setting of JOBSCL.
C             If JOBSCL = 'N', this array is not referenced.
C
C     LDA     INTEGER
C             The leading dimension of the array A.
C             LDA >= MAX(1,N), if JOBSCL <> 'N';
C             LDA >= 1,        if JOBSCL =  'N'.
C
C     QG      (input/output) DOUBLE PRECISION array, dimension
C             (LDQG,N+1)
C             On input, if JOBSCL <> 'N', the leading N-by-N lower
C             triangular part of this array must contain the lower
C             triangle of the lower left symmetric block Q of the
C             Hamiltonian matrix H in (1), and the N-by-N upper
C             triangular part of the submatrix in the columns 2 to N+1
C             of this array must contain the upper triangle of the upper
C             right symmetric block G of H in (1).
C             So, if i >= j, then Q(i,j) = Q(j,i) is stored in QG(i,j)
C             and G(i,j) = G(j,i) is stored in QG(j,i+1).
C             On output, if JOBSCL <> 'N', the leading N-by-N lower
C             triangular part of this array contains the lower triangle
C             of the lower left symmetric block Q' or Q'', and the
C             N-by-N upper triangular part of the submatrix in the
C             columns 2 to N+1 of this array contains the upper triangle
C             of the upper right symmetric block G' or G'' of the scaled
C             Hamiltonian matrix H' in (2) or H'' in (3), depending on
C             the setting of JOBSCL.
C             If JOBSCL = 'N', this array is not referenced.
C
C     LDQG    INTEGER
C             The leading dimension of the array QG.
C             LDQG >= MAX(1,N), if JOBSCL <> 'N';
C             LDQG >= 1,        if JOBSCL =  'N'.
C
C     D       (output) DOUBLE PRECISION array, dimension (nd)
C             If JOBSCL = 'S', then nd = N and D contains the diagonal
C             elements of the diagonal scaling matrix in (2).
C             If JOBSCL = '1' or 'O', then nd = 1 and D(1) is set to tau
C             from (3). In this case, no other elements of D are
C             referenced.
C             If JOBSCL = 'N', this array is not referenced.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (N)
C             If JOBSCL = 'N', this array is not referenced.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, then the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     1. Symplectic scaling (JOBSCL = 'S'):
C
C     First, LAPACK subroutine DGEBAL is used to equilibrate the 1-norms
C     of the rows and columns of A using a diagonal scaling matrix D_A.
C     Then, H is similarily transformed by the symplectic diagonal
C     matrix D1 = diag(D_A,D_A**(-1)).  Next, the off-diagonal blocks of
C     the resulting Hamiltonian matrix are equilibrated in the 1-norm
C     using the symplectic diagonal matrix D2 of the form
C
C                 ( I/rho    0   )
C            D2 = (              )
C                 (   0    rho*I )
C
C     where rho is a real scalar. Thus, in (2), D = D1*D2.
C
C     2. Norm scaling (JOBSCL = '1' or 'O'):
C
C     The norm of the matrices A and G of (1) is reduced by setting
C     A := A/tau  and  G := G/(tau**2) where tau is the power of the
C     base of the arithmetic closest to MAX(1, ||A||, ||G||, ||Q||) and
C     ||.|| denotes the 1-norm.
C
C     REFERENCES
C
C     [1] Benner, P., Byers, R., and Barth, E.
C         Fortran 77 Subroutines for Computing the Eigenvalues of
C         Hamiltonian Matrices. I: The Square-Reduced Method.
C         ACM Trans. Math. Software, 26, 1, pp. 49-77, 2000.
C
C     NUMERICAL ASPECTS
C
C     For symplectic scaling, the complexity of the used algorithms is
C     hard to estimate and depends upon how well the rows and columns of
C     A in (1) are equilibrated.  In one sweep, each row/column of A is
C     scaled once, i.e., the cost of one sweep is N**2 multiplications.
C     Usually, 3-6 sweeps are enough to equilibrate the norms of the
C     rows and columns of a matrix.  Roundoff errors are possible as
C     LAPACK routine DGEBAL does NOT use powers of the machine base for
C     scaling. The second stage (equilibrating ||G|| and ||Q||) requires
C     N**2 multiplications.
C     For norm scaling, 3*N**2 + O(N) multiplications are required and
C     NO rounding errors occur as all multiplications are performed with
C     powers of the machine base.
C
C     CONTRIBUTOR
C
C     P. Benner, Universitaet Bremen, Germany, and
C     R. Byers, University of Kansas, Lawrence, USA.
C     Aug. 1998, routine DHABL.
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Oct. 1998, SLICOT Library version.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, May 2009.
C
C     KEYWORDS
C
C     Balancing, Hamiltonian matrix, norms, symplectic similarity
C     transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDQG, N
      CHARACTER         JOBSCL
C    ..
C    .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), D(*), DWORK(*), QG(LDQG,*)
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION  ANRM, BASE, EPS, GNRM, OFL, QNRM,
     $                  RHO, SFMAX, SFMIN, TAU, UFL, Y
      INTEGER           I, IERR, IHI, ILO, J
      LOGICAL           NONE, NORM, SYMP
C     ..
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH, DLANGE, DLANSY
      LOGICAL           LSAME
      EXTERNAL          DLAMCH, DLANGE, DLANSY, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL          DGEBAL, DLABAD, DLASCL, DRSCL, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, MAX, SQRT
C     ..
C     .. Executable Statements ..
C
      INFO = 0
      SYMP = LSAME( JOBSCL, 'S' )
      NORM = LSAME( JOBSCL, '1' ) .OR. LSAME( JOBSCL, 'O' )
      NONE = LSAME( JOBSCL, 'N' )
C
      IF( .NOT.SYMP .AND. .NOT.NORM .AND. .NOT.NONE ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF(  LDA.LT.1 .OR. ( .NOT.NONE .AND.  LDA.LT.N ) ) THEN
         INFO = -4
      ELSE IF( LDQG.LT.1 .OR. ( .NOT.NONE .AND. LDQG.LT.N ) ) THEN
         INFO = -6
      END IF
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB04DY', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 .OR. NONE )
     $   RETURN
C
C     Set some machine dependant constants.
C
      BASE = DLAMCH( 'Base' )
      EPS  = DLAMCH( 'Precision' )
      UFL  = DLAMCH( 'Safe minimum' )
      OFL  = ONE/UFL
      CALL DLABAD( UFL, OFL )
      SFMAX = ( EPS/BASE )/UFL
      SFMIN = ONE/SFMAX
C
      IF ( NORM ) THEN
C
C        Compute norms.
C
         ANRM = DLANGE( '1-norm', N, N, A, LDA, DWORK )
         GNRM = DLANSY( '1-norm', 'Upper', N, QG(1,2), LDQG, DWORK )
         QNRM = DLANSY( '1-norm', 'Lower', N, QG, LDQG, DWORK )
         Y    = MAX( ONE, ANRM, GNRM, QNRM )
         TAU  = ONE
C
C        WHILE ( TAU < Y ) DO
   10    CONTINUE
         IF ( ( TAU.LT.Y ) .AND. ( TAU.LT.SQRT( SFMAX ) ) ) THEN
            TAU = TAU*BASE
            GO TO 10
         END IF
C        END WHILE 10
         IF ( TAU.GT.ONE ) THEN
            IF ( ABS( TAU/BASE - Y ).LT.ABS( TAU - Y ) )
     $         TAU = TAU/BASE
            CALL DLASCL( 'General', 0, 0, TAU, ONE, N, N, A, LDA, IERR )
            CALL DLASCL( 'Upper', 0, 0, TAU, ONE, N, N, QG(1,2), LDQG,
     $                   IERR )
            CALL DLASCL( 'Upper', 0, 0, TAU, ONE, N, N, QG(1,2), LDQG,
     $                   IERR )
         END IF
C
         D(1) = TAU
C
      ELSE
         CALL DGEBAL( 'Scale', N, A, LDA, ILO, IHI, D, IERR )
C
         DO 30 J = 1, N
C
            DO 20 I = J, N
               QG(I,J) = QG(I,J)*D(J)*D(I)
   20       CONTINUE
C
   30    CONTINUE
C
         DO 50 J = 2, N + 1
C
            DO 40 I = 1, J - 1
               QG(I,J) = QG(I,J)/D(J-1)/D(I)
   40       CONTINUE
C
   50    CONTINUE
C
         GNRM = DLANSY( '1-norm', 'Upper', N, QG(1,2), LDQG, DWORK )
         QNRM = DLANSY( '1-norm', 'Lower', N, QG, LDQG, DWORK )
         IF ( GNRM.EQ.ZERO ) THEN
            IF ( QNRM.EQ.ZERO ) THEN
               RHO = ONE
            ELSE
               RHO = SFMAX
            END IF
         ELSE IF ( QNRM.EQ.ZERO ) THEN
            RHO = SFMIN
         ELSE
            RHO = SQRT( QNRM )/SQRT( GNRM )
         END IF
C
         CALL DLASCL( 'Lower', 0, 0, RHO, ONE, N, N, QG, LDQG, IERR )
         CALL DLASCL( 'Upper', 0, 0, ONE, RHO, N, N, QG(1,2), LDQG,
     $                IERR )
         CALL DRSCL( N, SQRT( RHO ), D, 1 )
      END IF
C
      RETURN
C     *** Last line of MB04DY ***
      END