1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
SUBROUTINE MB04GD( M, N, A, LDA, JPVT, TAU, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute an RQ factorization with row pivoting of a
C real m-by-n matrix A: P*A = R*Q.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrix A. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrix A. N >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the m-by-n matrix A.
C On exit,
C if m <= n, the upper triangle of the subarray
C A(1:m,n-m+1:n) contains the m-by-m upper triangular
C matrix R;
C if m >= n, the elements on and above the (m-n)-th
C subdiagonal contain the m-by-n upper trapezoidal matrix R;
C the remaining elements, with the array TAU, represent the
C orthogonal matrix Q as a product of min(m,n) elementary
C reflectors (see METHOD).
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,M).
C
C JPVT (input/output) INTEGER array, dimension (M)
C On entry, if JPVT(i) .ne. 0, the i-th row of A is permuted
C to the bottom of P*A (a trailing row); if JPVT(i) = 0,
C the i-th row of A is a free row.
C On exit, if JPVT(i) = k, then the i-th row of P*A
C was the k-th row of A.
C
C TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
C The scalar factors of the elementary reflectors.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (3*M)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The matrix Q is represented as a product of elementary reflectors
C
C Q = H(1) H(2) . . . H(k), where k = min(m,n).
C
C Each H(i) has the form
C
C H = I - tau * v * v'
C
C where tau is a real scalar, and v is a real vector with
C v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit
C in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
C
C The matrix P is represented in jpvt as follows: If
C jpvt(j) = i
C then the jth row of P is the ith canonical unit vector.
C
C REFERENCES
C
C [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C Ostrouchov, S., and Sorensen, D.
C LAPACK Users' Guide: Second Edition.
C SIAM, Philadelphia, 1995.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTOR
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C Based on LAPACK Library routines DGEQPF and DGERQ2.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Factorization, matrix algebra, matrix operations, orthogonal
C transformation, triangular form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, P05
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, P05 = 0.05D+0 )
C ..
C .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
C ..
C .. Array Arguments ..
INTEGER JPVT( * )
DOUBLE PRECISION A( LDA, * ), DWORK( * ), TAU( * )
C ..
C .. Local Scalars ..
INTEGER I, ITEMP, J, K, MA, MKI, NFREE, NKI, PVT
DOUBLE PRECISION AII, TEMP, TEMP2
C ..
C .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DNRM2
EXTERNAL DNRM2, IDAMAX
C ..
C .. External Subroutines ..
EXTERNAL DGERQ2, DLARF, DLARFG, DORMR2, DSWAP, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
C ..
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MB04GD', -INFO )
RETURN
END IF
C
K = MIN( M, N )
C
C Move non-free rows bottom.
C
ITEMP = M
DO 10 I = M, 1, -1
IF( JPVT( I ).NE.0 ) THEN
IF( I.NE.ITEMP ) THEN
CALL DSWAP( N, A( I, 1 ), LDA, A( ITEMP, 1 ), LDA )
JPVT( I ) = JPVT( ITEMP )
JPVT( ITEMP ) = I
ELSE
JPVT( I ) = I
END IF
ITEMP = ITEMP - 1
ELSE
JPVT( I ) = I
END IF
10 CONTINUE
NFREE = M - ITEMP
C
C Compute the RQ factorization and update remaining rows.
C
IF( NFREE.GT.0 ) THEN
MA = MIN( NFREE, N )
CALL DGERQ2( MA, N, A(M-MA+1,1), LDA, TAU(K-MA+1), DWORK,
$ INFO )
CALL DORMR2( 'Right', 'Transpose', M-MA, N, MA, A(M-MA+1,1),
$ LDA, TAU(K-MA+1), A, LDA, DWORK, INFO )
END IF
C
IF( NFREE.LT.K ) THEN
C
C Initialize partial row norms. The first ITEMP elements of
C DWORK store the exact row norms. (Here, ITEMP is the number of
C free rows, which have been permuted to be the first ones.)
C
DO 20 I = 1, ITEMP
DWORK( I ) = DNRM2( N-NFREE, A( I, 1 ), LDA )
DWORK( M+I ) = DWORK( I )
20 CONTINUE
C
C Compute factorization.
C
DO 40 I = K-NFREE, 1, -1
C
C Determine ith pivot row and swap if necessary.
C
MKI = M - K + I
NKI = N - K + I
PVT = IDAMAX( MKI, DWORK, 1 )
C
IF( PVT.NE.MKI ) THEN
CALL DSWAP( N, A( PVT, 1 ), LDA, A( MKI, 1 ), LDA )
ITEMP = JPVT( PVT )
JPVT( PVT ) = JPVT( MKI )
JPVT( MKI ) = ITEMP
DWORK( PVT ) = DWORK( MKI )
DWORK( M+PVT ) = DWORK( M+MKI )
END IF
C
C Generate elementary reflector H(i) to annihilate
C A(m-k+i,1:n-k+i-1), k = min(m,n).
C
CALL DLARFG( NKI, A( MKI, NKI ), A( MKI, 1 ), LDA, TAU( I )
$ )
C
C Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right.
C
AII = A( MKI, NKI )
A( MKI, NKI ) = ONE
CALL DLARF( 'Right', MKI-1, NKI, A( MKI, 1 ), LDA,
$ TAU( I ), A, LDA, DWORK( 2*M+1 ) )
A( MKI, NKI ) = AII
C
C Update partial row norms.
C
DO 30 J = 1, MKI - 1
IF( DWORK( J ).NE.ZERO ) THEN
TEMP = ONE - ( ABS( A( J, NKI ) ) / DWORK( J ) )**2
TEMP = MAX( TEMP, ZERO )
TEMP2 = ONE + P05*TEMP*
$ ( DWORK( J ) / DWORK( M+J ) )**2
IF( TEMP2.EQ.ONE ) THEN
DWORK( J ) = DNRM2( NKI-1, A( J, 1 ), LDA )
DWORK( M+J ) = DWORK( J )
ELSE
DWORK( J ) = DWORK( J )*SQRT( TEMP )
END IF
END IF
30 CONTINUE
C
40 CONTINUE
END IF
C
RETURN
C *** Last line of MB04GD ***
END
|