File: MB04GD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (258 lines) | stat: -rw-r--r-- 8,082 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
      SUBROUTINE MB04GD( M, N, A, LDA, JPVT, TAU, DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute an RQ factorization with row pivoting of a
C     real m-by-n matrix A: P*A = R*Q.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows of the matrix A.  M >= 0.
C
C     N       (input) INTEGER
C             The number of columns of the matrix A.  N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the m-by-n matrix A.
C             On exit,
C             if m <= n, the upper triangle of the subarray
C             A(1:m,n-m+1:n) contains the m-by-m upper triangular
C             matrix R;
C             if m >= n, the elements on and above the (m-n)-th
C             subdiagonal contain the m-by-n upper trapezoidal matrix R;
C             the remaining elements, with the array TAU, represent the
C             orthogonal matrix Q as a product of min(m,n) elementary
C             reflectors (see METHOD).
C
C     LDA     INTEGER
C             The leading dimension of the array A. LDA >= max(1,M).
C
C     JPVT    (input/output) INTEGER array, dimension (M)
C             On entry, if JPVT(i) .ne. 0, the i-th row of A is permuted
C             to the bottom of P*A (a trailing row); if JPVT(i) = 0,
C             the i-th row of A is a free row.
C             On exit, if JPVT(i) = k, then the i-th row of P*A
C             was the k-th row of A.
C
C     TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
C             The scalar factors of the elementary reflectors.
C
C     Workspace
C
C     DWORK    DOUBLE PRECISION array, dimension (3*M)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The matrix Q is represented as a product of elementary reflectors
C
C        Q = H(1) H(2) . . . H(k), where k = min(m,n).
C
C     Each H(i) has the form
C
C        H = I - tau * v * v'
C
C     where tau is a real scalar, and v is a real vector with
C     v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit
C     in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
C
C     The matrix P is represented in jpvt as follows: If
C        jpvt(j) = i
C     then the jth row of P is the ith canonical unit vector.
C
C     REFERENCES
C
C     [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C         Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C         Ostrouchov, S., and Sorensen, D.
C         LAPACK Users' Guide: Second Edition.
C         SIAM, Philadelphia, 1995.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable.
C
C     CONTRIBUTOR
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C     Based on LAPACK Library routines DGEQPF and DGERQ2.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Factorization, matrix algebra, matrix operations, orthogonal
C     transformation, triangular form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, P05
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, P05 = 0.05D+0 )
C     ..
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
C     ..
C     .. Array Arguments ..
      INTEGER            JPVT( * )
      DOUBLE PRECISION   A( LDA, * ), DWORK( * ), TAU( * )
C     ..
C     .. Local Scalars ..
      INTEGER            I, ITEMP, J, K, MA, MKI, NFREE, NKI, PVT
      DOUBLE PRECISION   AII, TEMP, TEMP2
C     ..
C     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DNRM2
      EXTERNAL           DNRM2, IDAMAX
C     ..
C     .. External Subroutines ..
      EXTERNAL           DGERQ2, DLARF, DLARFG, DORMR2, DSWAP, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
C     ..
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB04GD', -INFO )
         RETURN
      END IF
C
      K = MIN( M, N )
C
C     Move non-free rows bottom.
C
      ITEMP = M
      DO 10 I = M, 1, -1
         IF( JPVT( I ).NE.0 ) THEN
            IF( I.NE.ITEMP ) THEN
               CALL DSWAP( N, A( I, 1 ), LDA, A( ITEMP, 1 ), LDA )
               JPVT( I ) = JPVT( ITEMP )
               JPVT( ITEMP ) = I
            ELSE
               JPVT( I ) = I
            END IF
            ITEMP = ITEMP - 1
         ELSE
            JPVT( I ) = I
         END IF
   10 CONTINUE
      NFREE = M - ITEMP
C
C     Compute the RQ factorization and update remaining rows.
C
      IF( NFREE.GT.0 ) THEN
         MA = MIN( NFREE, N )
         CALL DGERQ2( MA, N, A(M-MA+1,1), LDA, TAU(K-MA+1), DWORK,
     $                INFO )
         CALL DORMR2( 'Right', 'Transpose', M-MA, N, MA, A(M-MA+1,1),
     $                LDA, TAU(K-MA+1), A, LDA, DWORK, INFO )
      END IF
C
      IF( NFREE.LT.K ) THEN
C
C        Initialize partial row norms. The first ITEMP elements of
C        DWORK store the exact row norms. (Here, ITEMP is the number of
C        free rows, which have been permuted to be the first ones.)
C
         DO 20 I = 1, ITEMP
            DWORK( I ) = DNRM2( N-NFREE, A( I, 1 ), LDA )
            DWORK( M+I ) = DWORK( I )
   20    CONTINUE
C
C        Compute factorization.
C
         DO 40 I = K-NFREE, 1, -1
C
C           Determine ith pivot row and swap if necessary.
C
            MKI = M - K + I
            NKI = N - K + I
            PVT = IDAMAX( MKI, DWORK, 1 )
C
            IF( PVT.NE.MKI ) THEN
               CALL DSWAP( N, A( PVT, 1 ), LDA, A( MKI, 1 ), LDA )
               ITEMP = JPVT( PVT )
               JPVT( PVT ) = JPVT( MKI )
               JPVT( MKI ) = ITEMP
               DWORK( PVT )   = DWORK( MKI )
               DWORK( M+PVT ) = DWORK( M+MKI )
            END IF
C
C           Generate elementary reflector H(i) to annihilate
C           A(m-k+i,1:n-k+i-1), k = min(m,n).
C
            CALL DLARFG( NKI, A( MKI, NKI ), A( MKI, 1 ), LDA, TAU( I )
     $                 )
C
C           Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right.
C
            AII = A( MKI, NKI )
            A( MKI, NKI ) = ONE
            CALL DLARF( 'Right', MKI-1, NKI, A( MKI, 1 ), LDA,
     $                  TAU( I ), A, LDA, DWORK( 2*M+1 ) )
            A( MKI, NKI ) = AII
C
C           Update partial row norms.
C
            DO 30 J = 1, MKI - 1
               IF( DWORK( J ).NE.ZERO ) THEN
                  TEMP = ONE - ( ABS( A( J, NKI ) ) / DWORK( J ) )**2
                  TEMP = MAX( TEMP, ZERO )
                  TEMP2 = ONE + P05*TEMP*
     $                    ( DWORK( J ) / DWORK( M+J ) )**2
                  IF( TEMP2.EQ.ONE ) THEN
                     DWORK( J ) = DNRM2( NKI-1, A( J, 1 ), LDA )
                     DWORK( M+J ) = DWORK( J )
                  ELSE
                     DWORK( J ) = DWORK( J )*SQRT( TEMP )
                  END IF
               END IF
   30       CONTINUE
C
   40    CONTINUE
      END IF
C
      RETURN
C *** Last line of MB04GD ***
      END