File: MB04JD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (248 lines) | stat: -rw-r--r-- 8,181 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
      SUBROUTINE MB04JD( N, M, P, L, A, LDA, B, LDB, TAU, DWORK, LDWORK,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute an LQ factorization of an n-by-m matrix A (A = L * Q),
C     having a min(n,p)-by-p zero triangle in the upper right-hand side
C     corner, as shown below, for n = 8, m = 7, and p = 2:
C
C            [ x x x x x 0 0 ]
C            [ x x x x x x 0 ]
C            [ x x x x x x x ]
C            [ x x x x x x x ]
C        A = [ x x x x x x x ],
C            [ x x x x x x x ]
C            [ x x x x x x x ]
C            [ x x x x x x x ]
C
C     and optionally apply the transformations to an l-by-m matrix B
C     (from the right). The problem structure is exploited. This
C     computation is useful, for instance, in combined measurement and
C     time update of one iteration of the time-invariant Kalman filter
C     (square root covariance filter).
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of rows of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix A.  M >= 0.
C
C     P       (input) INTEGER
C             The order of the zero triagle.  P >= 0.
C
C     L       (input) INTEGER
C             The number of rows of the matrix B.  L >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,M)
C             On entry, the leading N-by-M part of this array must
C             contain the matrix A. The elements corresponding to the
C             zero MIN(N,P)-by-P upper trapezoidal/triangular part
C             (if P > 0) are not referenced.
C             On exit, the elements on and below the diagonal of this
C             array contain the N-by-MIN(N,M) lower trapezoidal matrix
C             L (L is lower triangular, if N <= M) of the LQ
C             factorization, and the relevant elements above the
C             diagonal contain the trailing components (the vectors v,
C             see Method) of the elementary reflectors used in the
C             factorization.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading L-by-M part of this array must
C             contain the matrix B.
C             On exit, the leading L-by-M part of this array contains
C             the updated matrix B.
C             If L = 0, this array is not referenced.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,L).
C
C     TAU     (output) DOUBLE PRECISION array, dimension MIN(N,M)
C             The scalar factors of the elementary reflectors used.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  The length of the array DWORK.
C             LDWORK >= MAX(1,N-1,N-P,L).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The routine uses min(N,M) Householder transformations exploiting
C     the zero pattern of the matrix.  A Householder matrix has the form
C
C                                     ( 1 ),
C        H  = I - tau *u *u',    u  = ( v )
C         i          i  i  i      i   (  i)
C
C     where v  is an (M-P+I-2)-vector.  The components of v  are stored
C            i                                             i
C     in the i-th row of A, beginning from the location i+1, and tau
C                                                                   i
C     is stored in TAU(i).
C
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable.
C
C     CONTRIBUTORS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary reflector, LQ factorization, orthogonal transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, L, LDA, LDB, LDWORK, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), DWORK(*), TAU(*)
C     .. Local Scalars ..
      INTEGER           I
      DOUBLE PRECISION  FIRST, WRKOPT
C     .. External Subroutines ..
      EXTERNAL          DGELQF, DLARF, DLARFG, DORMLQ, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX, MIN
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( P.LT.0 ) THEN
         INFO = -3
      ELSE IF( L.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, L ) ) THEN
         INFO = -8
      ELSE IF( LDWORK.LT.MAX( 1, N - 1, N - P, L ) ) THEN
         INFO = -11
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB04JD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( M, N ).EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      ELSE IF( M.LE.P+1 ) THEN
         DO 5 I = 1, MIN( N, M )
            TAU(I) = ZERO
    5    CONTINUE
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Annihilate the superdiagonal elements of A and apply the
C     transformations to B, if L > 0.
C     Workspace: need MAX(N-1,L).
C
C     (Note: Comments in the code beginning "Workspace:" describe the
C     minimal amount of real workspace needed at that point in the
C     code, as well as the preferred amount for good performance.
C     NB refers to the optimal block size for the immediately
C     following subroutine, as returned by ILAENV.)
C
      DO 10 I = 1, MIN( N, P )
C
C        Exploit the structure of the I-th row of A.
C
         CALL DLARFG( M-P, A(I,I), A(I,I+1), LDA, TAU(I) )
         IF( TAU(I).NE.ZERO ) THEN
C
            FIRST = A(I,I)
            A(I,I) = ONE
C
            IF ( I.LT.N ) CALL DLARF( 'Right', N-I, M-P, A(I,I), LDA,
     $                                TAU(I), A(I+1,I), LDA, DWORK )
            IF ( L.GT.0 ) CALL DLARF( 'Right', L, M-P, A(I,I), LDA,
     $                                TAU(I), B(1,I), LDB, DWORK )
C
            A(I,I) = FIRST
         END IF
   10 CONTINUE
C
      WRKOPT = MAX( ONE, DBLE( N - 1 ), DBLE( L ) )
C
C     Fast LQ factorization of the remaining trailing submatrix, if any.
C     Workspace: need N-P;  prefer (N-P)*NB.
C
      IF( N.GT.P ) THEN
         CALL DGELQF( N-P, M-P, A(P+1,P+1), LDA, TAU(P+1), DWORK,
     $                LDWORK, INFO )
         WRKOPT = MAX( WRKOPT, DWORK(1) )
C
         IF ( L.GT.0 ) THEN
C
C           Apply the transformations to B.
C           Workspace: need L;  prefer L*NB.
C
            CALL DORMLQ( 'Right', 'Transpose', L, M-P, MIN(N,M)-P,
     $                   A(P+1,P+1), LDA, TAU(P+1), B(1,P+1), LDB,
     $                   DWORK, LDWORK, INFO )
            WRKOPT = MAX( WRKOPT, DWORK(1) )
         END IF
      END IF
C
      DWORK(1) = WRKOPT
      RETURN
C *** Last line of MB04JD ***
      END