1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
SUBROUTINE MB04LD( UPLO, N, M, P, L, LDL, A, LDA, B, LDB, C, LDC,
$ TAU, DWORK )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To calculate an LQ factorization of the first block row and apply
C the orthogonal transformations (from the right) also to the second
C block row of a structured matrix, as follows
C _
C [ L A ] [ L 0 ]
C [ ]*Q = [ ]
C [ 0 B ] [ C D ]
C _
C where L and L are lower triangular. The matrix A can be full or
C lower trapezoidal/triangular. The problem structure is exploited.
C This computation is useful, for instance, in combined measurement
C and time update of one iteration of the Kalman filter (square
C root covariance filter).
C
C ARGUMENTS
C
C Mode Parameters
C
C UPLO CHARACTER*1
C Indicates if the matrix A is or not triangular as follows:
C = 'L': Matrix A is lower trapezoidal/triangular;
C = 'F': Matrix A is full.
C
C Input/Output Parameters
C
C N (input) INTEGER _
C The order of the matrices L and L. N >= 0.
C
C M (input) INTEGER
C The number of columns of the matrices A, B and D. M >= 0.
C
C P (input) INTEGER
C The number of rows of the matrices B, C and D. P >= 0.
C
C L (input/output) DOUBLE PRECISION array, dimension (LDL,N)
C On entry, the leading N-by-N lower triangular part of this
C array must contain the lower triangular matrix L.
C On exit, the leading N-by-N lower triangular part of this
C _
C array contains the lower triangular matrix L.
C The strict upper triangular part of this array is not
C referenced.
C
C LDL INTEGER
C The leading dimension of array L. LDL >= MAX(1,N).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
C On entry, if UPLO = 'F', the leading N-by-M part of this
C array must contain the matrix A. If UPLO = 'L', the
C leading N-by-MIN(N,M) part of this array must contain the
C lower trapezoidal (lower triangular if N <= M) matrix A,
C and the elements above the diagonal are not referenced.
C On exit, the leading N-by-M part (lower trapezoidal or
C triangular, if UPLO = 'L') of this array contains the
C trailing components (the vectors v, see Method) of the
C elementary reflectors used in the factorization.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading P-by-M part of this array must
C contain the matrix B.
C On exit, the leading P-by-M part of this array contains
C the computed matrix D.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,P).
C
C C (output) DOUBLE PRECISION array, dimension (LDC,N)
C The leading P-by-N part of this array contains the
C computed matrix C.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,P).
C
C TAU (output) DOUBLE PRECISION array, dimension (N)
C The scalar factors of the elementary reflectors used.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (N)
C
C METHOD
C
C The routine uses N Householder transformations exploiting the zero
C pattern of the block matrix. A Householder matrix has the form
C
C ( 1 ),
C H = I - tau *u *u', u = ( v )
C i i i i i ( i)
C
C where v is an M-vector, if UPLO = 'F', or an min(i,M)-vector, if
C i
C UPLO = 'L'. The components of v are stored in the i-th row of A,
C i
C and tau is stored in TAU(i).
C i
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTORS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary reflector, LQ factorization, orthogonal transformation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDB, LDC, LDL, M, N, P
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
$ L(LDL,*), TAU(*)
C .. Local Scalars ..
LOGICAL LUPLO
INTEGER I, IM
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMV, DGER, DLARFG, DSCAL
C .. Intrinsic Functions ..
INTRINSIC MIN
C .. Executable Statements ..
C
IF( MIN( M, N ).EQ.0 )
$ RETURN
C
LUPLO = LSAME( UPLO, 'L' )
IM = M
C
DO 10 I = 1, N
C
C Annihilate the I-th row of A and apply the transformations to
C the entire block matrix, exploiting its structure.
C
IF( LUPLO ) IM = MIN( I, M )
CALL DLARFG( IM+1, L(I,I), A(I,1), LDA, TAU(I) )
IF( TAU(I).NE.ZERO ) THEN
C
C [ w ] [ L(I+1:N,I) A(I+1:N,1:IM) ] [ 1 ]
C [ ] := [ ] * [ ]
C [ C(:,I) ] [ 0 B(:,1:IM) ] [ v ]
C
IF( I.LT.N ) THEN
CALL DCOPY( N-I, L(I+1,I), 1, DWORK, 1 )
CALL DGEMV( 'No transpose', N-I, IM, ONE, A(I+1,1), LDA,
$ A(I,1), LDA, ONE, DWORK, 1 )
END IF
CALL DGEMV( 'No transpose', P, IM, ONE, B, LDB, A(I,1),
$ LDA, ZERO, C(1,I), 1 )
C
C [ L(I+1:N,I) A(I+1:N,1:IM) ] [ L(I+1:N,I) A(I+1:N,1:IM) ]
C [ ] := [ ]
C [ C(:,I) D(:,1:IM) ] [ 0 B(:,1:IM) ]
C
C [ w ]
C - tau * [ ] * [ 1 , v']
C [ C(:,I) ]
C
IF( I.LT.N ) THEN
CALL DAXPY( N-I, -TAU(I), DWORK, 1, L(I+1,I), 1 )
CALL DGER( N-I, IM, -TAU(I), DWORK, 1, A(I,1), LDA,
$ A(I+1,1), LDA )
END IF
CALL DSCAL( P, -TAU(I), C(1,I), 1 )
CALL DGER( P, IM, ONE, C(1,I), 1, A(I,1), LDA, B, LDB )
END IF
10 CONTINUE
C
RETURN
C *** Last line of MB04LD ***
END
|