File: MB04LD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (209 lines) | stat: -rw-r--r-- 7,719 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
      SUBROUTINE MB04LD( UPLO, N, M, P, L, LDL, A, LDA, B, LDB, C, LDC,
     $                   TAU, DWORK )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To calculate an LQ factorization of the first block row and apply
C     the orthogonal transformations (from the right) also to the second
C     block row of a structured matrix, as follows
C                        _
C        [ L   A ]     [ L   0 ]
C        [       ]*Q = [       ]
C        [ 0   B ]     [ C   D ]
C                 _
C     where L and L are lower triangular. The matrix A can be full or
C     lower trapezoidal/triangular. The problem structure is exploited.
C     This computation is useful, for instance, in combined measurement
C     and time update of one iteration of the Kalman filter (square
C     root covariance filter).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     UPLO    CHARACTER*1
C             Indicates if the matrix A is or not triangular as follows:
C             = 'L':  Matrix A is lower trapezoidal/triangular;
C             = 'F':  Matrix A is full.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER                 _
C             The order of the matrices L and L.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrices A, B and D.  M >= 0.
C
C     P       (input) INTEGER
C             The number of rows of the matrices B, C and D.  P >= 0.
C
C     L       (input/output) DOUBLE PRECISION array, dimension (LDL,N)
C             On entry, the leading N-by-N lower triangular part of this
C             array must contain the lower triangular matrix L.
C             On exit, the leading N-by-N lower triangular part of this
C                                                        _
C             array contains the lower triangular matrix L.
C             The strict upper triangular part of this array is not
C             referenced.
C
C     LDL     INTEGER
C             The leading dimension of array L.  LDL >= MAX(1,N).
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,M)
C             On entry, if UPLO = 'F', the leading N-by-M part of this
C             array must contain the matrix A. If UPLO = 'L', the
C             leading N-by-MIN(N,M) part of this array must contain the
C             lower trapezoidal (lower triangular if N <= M) matrix A,
C             and the elements above the diagonal are not referenced.
C             On exit, the leading N-by-M part (lower trapezoidal or
C             triangular, if UPLO = 'L') of this array contains the
C             trailing components (the vectors v, see Method) of the
C             elementary reflectors used in the factorization.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading P-by-M part of this array must
C             contain the matrix B.
C             On exit, the leading P-by-M part of this array contains
C             the computed matrix D.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,P).
C
C     C       (output) DOUBLE PRECISION array, dimension (LDC,N)
C             The leading P-by-N part of this array contains the
C             computed matrix C.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,P).
C
C     TAU     (output) DOUBLE PRECISION array, dimension (N)
C             The scalar factors of the elementary reflectors used.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (N)
C
C     METHOD
C
C     The routine uses N Householder transformations exploiting the zero
C     pattern of the block matrix.  A Householder matrix has the form
C
C                                     ( 1 ),
C        H  = I - tau *u *u',    u  = ( v )
C         i          i  i  i      i   (  i)
C
C     where v  is an M-vector, if UPLO = 'F', or an min(i,M)-vector, if
C            i
C     UPLO = 'L'.  The components of v  are stored in the i-th row of A,
C                                     i
C     and tau  is stored in TAU(i).
C            i
C
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable.
C
C     CONTRIBUTORS
C
C     V. Sima, Katholieke Univ. Leuven, Belgium, Feb. 1997.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary reflector, LQ factorization, orthogonal transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         UPLO
      INTEGER           LDA, LDB, LDC, LDL, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*),
     $                  L(LDL,*), TAU(*)
C     .. Local Scalars ..
      LOGICAL           LUPLO
      INTEGER           I, IM
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMV, DGER, DLARFG, DSCAL
C     .. Intrinsic Functions ..
      INTRINSIC         MIN
C     .. Executable Statements ..
C
      IF( MIN( M, N ).EQ.0 )
     $   RETURN
C
      LUPLO = LSAME( UPLO, 'L' )
      IM = M
C
      DO 10 I = 1, N
C
C        Annihilate the I-th row of A and apply the transformations to
C        the entire block matrix, exploiting its structure.
C
         IF( LUPLO ) IM = MIN( I, M )
         CALL DLARFG( IM+1, L(I,I), A(I,1), LDA, TAU(I) )
         IF( TAU(I).NE.ZERO ) THEN
C
C           [    w   ]    [ L(I+1:N,I) A(I+1:N,1:IM) ]   [ 1 ]
C           [        ] := [                          ] * [   ]
C           [ C(:,I) ]    [      0        B(:,1:IM)  ]   [ v ]
C
            IF( I.LT.N ) THEN
               CALL DCOPY( N-I, L(I+1,I), 1, DWORK, 1 )
               CALL DGEMV( 'No transpose', N-I, IM, ONE, A(I+1,1), LDA,
     $                     A(I,1), LDA, ONE, DWORK, 1 )
            END IF
            CALL DGEMV( 'No transpose', P, IM, ONE, B, LDB, A(I,1),
     $                  LDA, ZERO, C(1,I), 1 )
C
C           [ L(I+1:N,I) A(I+1:N,1:IM) ]    [ L(I+1:N,I) A(I+1:N,1:IM) ]
C           [                          ] := [                          ]
C           [   C(:,I)      D(:,1:IM)  ]    [      0        B(:,1:IM)  ]
C
C                                                 [    w   ]
C                                         - tau * [        ] * [ 1 , v']
C                                                 [ C(:,I) ]
C
            IF( I.LT.N ) THEN
               CALL DAXPY( N-I, -TAU(I), DWORK, 1, L(I+1,I), 1 )
               CALL DGER( N-I, IM, -TAU(I), DWORK, 1, A(I,1), LDA,
     $                    A(I+1,1), LDA )
            END IF
            CALL DSCAL( P, -TAU(I), C(1,I), 1 )
            CALL DGER( P, IM, ONE, C(1,I), 1, A(I,1), LDA, B, LDB )
         END IF
   10 CONTINUE
C
      RETURN
C *** Last line of MB04LD ***
      END