1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
SUBROUTINE MB04TB( TRANA, TRANB, N, ILO, A, LDA, B, LDB, G, LDG,
$ Q, LDQ, CSL, CSR, TAUL, TAUR, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute a symplectic URV (SURV) decomposition of a real
C 2N-by-2N matrix H,
C
C [ op(A) G ] [ op(R11) R12 ]
C H = [ ] = U R V' = U * [ ] * V' ,
C [ Q op(B) ] [ 0 op(R22) ]
C
C where A, B, G, Q, R12 are real N-by-N matrices, op(R11) is a real
C N-by-N upper triangular matrix, op(R22) is a real N-by-N lower
C Hessenberg matrix and U, V are 2N-by-2N orthogonal symplectic
C matrices. Blocked version.
C
C ARGUMENTS
C
C Mode Parameters
C
C TRANA CHARACTER*1
C Specifies the form of op( A ) as follows:
C = 'N': op( A ) = A;
C = 'T': op( A ) = A';
C = 'C': op( A ) = A'.
C
C TRANB CHARACTER*1
C Specifies the form of op( B ) as follows:
C = 'N': op( B ) = B;
C = 'T': op( B ) = B';
C = 'C': op( B ) = B'.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C ILO (input) INTEGER
C It is assumed that op(A) is already upper triangular,
C op(B) is lower triangular and Q is zero in rows and
C columns 1:ILO-1. ILO is normally set by a previous call
C to MB04DD; otherwise it should be set to 1.
C 1 <= ILO <= N, if N > 0; ILO=1, if N=0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix A.
C On exit, the leading N-by-N part of this array contains
C the triangular matrix R11, and in the zero part
C information about the elementary reflectors used to
C compute the SURV decomposition.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= MAX(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix B.
C On exit, the leading N-by-N part of this array contains
C the Hessenberg matrix R22, and in the zero part
C information about the elementary reflectors used to
C compute the SURV decomposition.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= MAX(1,N).
C
C G (input/output) DOUBLE PRECISION array, dimension (LDG,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix G.
C On exit, the leading N-by-N part of this array contains
C the matrix R12.
C
C LDG INTEGER
C The leading dimension of the array G. LDG >= MAX(1,N).
C
C Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix Q.
C On exit, the leading N-by-N part of this array contains
C information about the elementary reflectors used to
C compute the SURV decomposition.
C
C LDQ INTEGER
C The leading dimension of the array Q. LDQ >= MAX(1,N).
C
C CSL (output) DOUBLE PRECISION array, dimension (2N)
C On exit, the first 2N elements of this array contain the
C cosines and sines of the symplectic Givens rotations
C applied from the left-hand side used to compute the SURV
C decomposition.
C
C CSR (output) DOUBLE PRECISION array, dimension (2N-2)
C On exit, the first 2N-2 elements of this array contain the
C cosines and sines of the symplectic Givens rotations
C applied from the right-hand side used to compute the SURV
C decomposition.
C
C TAUL (output) DOUBLE PRECISION array, dimension (N)
C On exit, the first N elements of this array contain the
C scalar factors of some of the elementary reflectors
C applied form the left-hand side.
C
C TAUR (output) DOUBLE PRECISION array, dimension (N-1)
C On exit, the first N-1 elements of this array contain the
C scalar factors of some of the elementary reflectors
C applied form the right-hand side.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal
C value of LDWORK, (16*N + 5)*NB, where NB is the optimal
C block size determined by the function UE01MD.
C On exit, if INFO = -16, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= MAX(1,N).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The matrices U and V are represented as products of symplectic
C reflectors and Givens rotators
C
C U = diag( HU(1),HU(1) ) GU(1) diag( FU(1),FU(1) )
C diag( HU(2),HU(2) ) GU(2) diag( FU(2),FU(2) )
C ....
C diag( HU(n),HU(n) ) GU(n) diag( FU(n),FU(n) ),
C
C V = diag( HV(1),HV(1) ) GV(1) diag( FV(1),FV(1) )
C diag( HV(2),HV(2) ) GV(2) diag( FV(2),FV(2) )
C ....
C diag( HV(n-1),HV(n-1) ) GV(n-1) diag( FV(n-1),FV(n-1) ).
C
C Each HU(i) has the form
C
C HU(i) = I - tau * v * v'
C
C where tau is a real scalar, and v is a real vector with
C v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in
C Q(i+1:n,i), and tau in Q(i,i).
C
C Each FU(i) has the form
C
C FU(i) = I - nu * w * w'
C
C where nu is a real scalar, and w is a real vector with
C w(1:i-1) = 0 and w(i) = 1; w(i+1:n) is stored on exit in
C A(i+1:n,i), if op(A) = 'N', and in A(i,i+1:n), otherwise. The
C scalar nu is stored in TAUL(i).
C
C Each GU(i) is a Givens rotator acting on rows i and n+i,
C where the cosine is stored in CSL(2*i-1) and the sine in
C CSL(2*i).
C
C Each HV(i) has the form
C
C HV(i) = I - tau * v * v'
C
C where tau is a real scalar, and v is a real vector with
C v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
C Q(i,i+2:n), and tau in Q(i,i+1).
C
C Each FV(i) has the form
C
C FV(i) = I - nu * w * w'
C
C where nu is a real scalar, and w is a real vector with
C w(1:i) = 0 and w(i+1) = 1; w(i+2:n) is stored on exit in
C B(i,i+2:n), if op(B) = 'N', and in B(i+2:n,i), otherwise.
C The scalar nu is stored in TAUR(i).
C
C Each GV(i) is a Givens rotator acting on columns i+1 and n+i+1,
C where the cosine is stored in CSR(2*i-1) and the sine in
C CSR(2*i).
C
C NUMERICAL ASPECTS
C
C The algorithm requires 80/3*N**3 + ( 64*NB + 77 )*N**2 +
C ( -16*NB + 48 )*NB*N + O(N) floating point operations, where
C NB is the used block size, and is numerically backward stable.
C
C REFERENCES
C
C [1] Benner, P., Mehrmann, V., and Xu, H.
C A numerically stable, structure preserving method for
C computing the eigenvalues of real Hamiltonian or symplectic
C pencils. Numer. Math., Vol 78 (3), pp. 329-358, 1998.
C
C [2] Kressner, D.
C Block algorithms for orthogonal symplectic factorizations.
C BIT, 43 (4), pp. 775-790, 2003.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, June 2008 (SLICOT version of the HAPACK routine DGESUB).
C
C KEYWORDS
C
C Elementary matrix operations, Matrix decompositions, Hamiltonian
C matrix
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER TRANA, TRANB
INTEGER ILO, INFO, LDA, LDB, LDG, LDQ, LDWORK, N
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), CSL(*), CSR(*), DWORK(*),
$ G(LDG,*), Q(LDQ,*), TAUL(*), TAUR(*)
C .. Local Scalars ..
LOGICAL LTRA, LTRB
INTEGER I, IB, IERR, NB, NBMIN, NH, NIB, NNB, NX, PDW,
$ PXA, PXB, PXG, PXQ, PYA, PYB, PYG, PYQ, WRKOPT
C .. External Functions ..
LOGICAL LSAME
INTEGER UE01MD
EXTERNAL LSAME, UE01MD
C .. External Subroutines ..
EXTERNAL DGEMM, MB03XU, MB04TS, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
C
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
INFO = 0
LTRA = LSAME( TRANA, 'T' ) .OR. LSAME( TRANA, 'C' )
LTRB = LSAME( TRANB, 'T' ) .OR. LSAME( TRANB, 'C' )
IF ( .NOT.LTRA .AND. .NOT.LSAME( TRANA, 'N' ) ) THEN
INFO = -1
ELSE IF ( .NOT.LTRB .AND. .NOT.LSAME( TRANB, 'N' ) ) THEN
INFO = -2
ELSE IF ( N.LT.0 ) THEN
INFO = -3
ELSE IF ( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF ( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF ( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF ( LDG.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF ( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF ( LDWORK.LT.MAX( 1, N ) ) THEN
DWORK(1) = DBLE( MAX( 1, N ) )
INFO = -18
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB04TB', -INFO )
RETURN
END IF
C
C Set elements 1:ILO-1 of CSL, CSR, TAUL and TAUR to their default
C values.
C
DO 10 I = 1, ILO - 1
CSL(2*I-1) = ONE
CSL(2*I) = ZERO
CSR(2*I-1) = ONE
CSR(2*I) = ZERO
TAUL(I) = ZERO
TAUR(I) = ZERO
10 CONTINUE
C
C Quick return if possible.
C
NH = N - ILO + 1
IF ( NH.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C Determine the block size.
C
NB = UE01MD( 1, 'MB04TB', TRANA // TRANB, N, ILO, -1 )
NBMIN = 2
WRKOPT = N
IF ( NB.GT.1 .AND. NB.LT.NH ) THEN
C
C Determine when to cross over from blocked to unblocked code.
C
NX = MAX( NB, UE01MD( 3, 'MB04TB', TRANA // TRANB, N, ILO, -1 )
$ )
IF ( NX.LT.NH ) THEN
C
C Check whether workspace is large enough for blocked code.
C
WRKOPT = 16*N*NB + 5*NB
IF ( LDWORK.LT.WRKOPT ) THEN
C
C Not enough workspace available. Determine minimum value
C of NB, and reduce NB.
C
NBMIN = MAX( 2, UE01MD( 2, 'MB04TB', TRANA // TRANB, N,
$ ILO, -1 ) )
NB = LDWORK / ( 16*N + 5 )
END IF
END IF
END IF
C
NNB = N*NB
PYB = 1
PYQ = PYB + 2*NNB
PYA = PYQ + 2*NNB
PYG = PYA + 2*NNB
PXQ = PYG + 2*NNB
PXA = PXQ + 2*NNB
PXG = PXA + 2*NNB
PXB = PXG + 2*NNB
PDW = PXB + 2*NNB
C
IF ( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
C
C Use unblocked code.
C
I = ILO
C
ELSE IF ( LTRA .AND. LTRB ) THEN
DO 20 I = ILO, N-NX-1, NB
IB = MIN( NB, N-I )
NIB = N*IB
C
C Reduce rows and columns i:i+nb-1 to symplectic URV form and
C return the matrices XA, XB, XG, XQ, YA, YB, YG and YQ which
C are needed to update the unreduced parts of the matrices.
C
CALL MB03XU( LTRA, LTRB, N-I+1, I-1, IB, A(I,1), LDA,
$ B(1,I), LDB, G, LDG, Q(I,I), LDQ, DWORK(PXA),
$ N, DWORK(PXB), N, DWORK(PXG), N, DWORK(PXQ), N,
$ DWORK(PYA), N, DWORK(PYB), N, DWORK(PYG), N,
$ DWORK(PYQ), N, CSL(2*I-1), CSR(2*I-1), TAUL(I),
$ TAUR(I), DWORK(PDW) )
C
C Update the submatrix A(i+1+ib:n,1:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N-I-IB+1,
$ IB, ONE, DWORK(PXA+NB+1), N, Q(I+IB,I), LDQ,
$ ONE, A(I+IB+1,I+IB), LDA )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB,
$ N-I-IB+1, IB, ONE, DWORK(PXA+NIB+NB+1), N,
$ A(I,I+IB), LDA, ONE, A(I+IB+1,I+IB), LDA )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N, IB,
$ ONE, Q(I,I+IB+1), LDQ, DWORK(PYA), N, ONE,
$ A(I+IB+1,1), LDA )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N, IB,
$ ONE, B(I+IB+1,I), LDB, DWORK(PYA+NIB), N, ONE,
$ A(I+IB+1,1), LDA )
C
C Update the submatrix Q(i+ib:n,i+1+ib:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, Q(I+IB,I), LDQ, DWORK(PXQ+NB+1), N,
$ ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, A(I,I+IB), LDA, DWORK(PXQ+NIB+NB+1), N,
$ ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYQ+NB), N,
$ Q(I,I+IB+1), LDQ, ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYQ+NIB+NB), N,
$ B(I+IB+1,I), LDB, ONE, Q(I+IB,I+IB+1), LDQ )
C
C Update the matrix G.
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, Q(I+IB,I), LDQ, DWORK(PXG), N, ONE,
$ G(I+IB,1), LDG )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, A(I,I+IB), LDA, DWORK(PXG+NIB), N, ONE,
$ G(I+IB,1), LDG )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYG), N, Q(I,I+IB+1), LDQ, ONE,
$ G(1,I+IB+1), LDG )
CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYG+NIB), N, B(I+IB+1,I), LDB, ONE,
$ G(1,I+IB+1), LDG )
C
C Update the submatrix B(1:n,i+ib:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB+1,
$ IB, ONE, DWORK(PXB), N, Q(I+IB,I), LDQ,
$ ONE, B(1,I+IB), LDB )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB+1, IB,
$ ONE, DWORK(PXB+NIB), N, A(I,I+IB), LDA, ONE,
$ B(1,I+IB), LDB )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N-I-IB+1,
$ IB, ONE, Q(I,I+IB+1), LDQ, DWORK(PYB+NB), N,
$ ONE, B(I+IB+1,I+IB), LDB )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N-I-IB+1,
$ IB, ONE, B(I+IB+1,I), LDB, DWORK(PYB+NIB+NB), N,
$ ONE, B(I+IB+1,I+IB), LDB )
20 CONTINUE
C
ELSE IF ( LTRA ) THEN
DO 30 I = ILO, N-NX-1, NB
IB = MIN( NB, N-I )
NIB = N*IB
C
C Reduce rows and columns i:i+nb-1 to symplectic URV form and
C return the matrices XA, XB, XG, XQ, YA, YB, YG and YQ which
C are needed to update the unreduced parts of the matrices.
C
CALL MB03XU( LTRA, LTRB, N-I+1, I-1, IB, A(I,1), LDA,
$ B(I,1), LDB, G, LDG, Q(I,I), LDQ, DWORK(PXA),
$ N, DWORK(PXB), N, DWORK(PXG), N, DWORK(PXQ), N,
$ DWORK(PYA), N, DWORK(PYB), N, DWORK(PYG), N,
$ DWORK(PYQ), N, CSL(2*I-1), CSR(2*I-1), TAUL(I),
$ TAUR(I), DWORK(PDW) )
C
C Update the submatrix A(i+1+ib:n,1:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N-I-IB+1,
$ IB, ONE, DWORK(PXA+NB+1), N, Q(I+IB,I), LDQ,
$ ONE, A(I+IB+1,I+IB), LDA )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB,
$ N-I-IB+1, IB, ONE, DWORK(PXA+NIB+NB+1), N,
$ A(I,I+IB), LDA, ONE, A(I+IB+1,I+IB), LDA )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N, IB,
$ ONE, Q(I,I+IB+1), LDQ, DWORK(PYA), N, ONE,
$ A(I+IB+1,1), LDA )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N, IB,
$ ONE, B(I,I+IB+1), LDB, DWORK(PYA+NIB), N, ONE,
$ A(I+IB+1,1), LDA )
C
C Update the submatrix Q(i+ib:n,i+1+ib:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, Q(I+IB,I), LDQ, DWORK(PXQ+NB+1), N,
$ ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, A(I,I+IB), LDA, DWORK(PXQ+NIB+NB+1), N,
$ ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYQ+NB), N,
$ Q(I,I+IB+1), LDQ, ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYQ+NIB+NB), N,
$ B(I,I+IB+1), LDB, ONE, Q(I+IB,I+IB+1), LDQ )
C
C Update the matrix G.
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, Q(I+IB,I), LDQ, DWORK(PXG), N, ONE,
$ G(I+IB,1), LDG )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, A(I,I+IB), LDA, DWORK(PXG+NIB), N, ONE,
$ G(I+IB,1), LDG )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYG), N, Q(I,I+IB+1), LDQ, ONE,
$ G(1,I+IB+1), LDG )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYG+NIB), N, B(I,I+IB+1), LDB, ONE,
$ G(1,I+IB+1), LDG )
C
C Update the submatrix B(i+ib:n,1:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N,
$ IB, ONE, Q(I+IB,I), LDQ, DWORK(PXB), N,
$ ONE, B(I+IB,1), LDB )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, A(I,I+IB), LDA, DWORK(PXB+NIB), N, ONE,
$ B(I+IB,1), LDB )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYB+NB), N, Q(I,I+IB+1),
$ LDQ, ONE, B(I+IB,I+IB+1), LDB )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYB+NIB+NB), N,
$ B(I,I+IB+1), LDB, ONE, B(I+IB,I+IB+1), LDB )
30 CONTINUE
C
ELSE IF ( LTRB ) THEN
DO 40 I = ILO, N-NX-1, NB
IB = MIN( NB, N-I )
NIB = N*IB
C
C Reduce rows and columns i:i+nb-1 to symplectic URV form and
C return the matrices XA, XB, XG, XQ, YA, YB, YG and YQ which
C are needed to update the unreduced parts of the matrices.
C
CALL MB03XU( LTRA, LTRB, N-I+1, I-1, IB, A(1,I), LDA,
$ B(1,I), LDB, G, LDG, Q(I,I), LDQ, DWORK(PXA),
$ N, DWORK(PXB), N, DWORK(PXG), N, DWORK(PXQ), N,
$ DWORK(PYA), N, DWORK(PYB), N, DWORK(PYG), N,
$ DWORK(PYQ), N, CSL(2*I-1), CSR(2*I-1), TAUL(I),
$ TAUR(I), DWORK(PDW) )
C
C Update the submatrix A(1:n,i+1+ib:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, Q(I+IB,I), LDQ, DWORK(PXA+NB+1), N,
$ ONE, A(I+IB,I+IB+1), LDA )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, A(I+IB,I), LDA, DWORK(PXA+NIB+NB+1), N,
$ ONE, A(I+IB,I+IB+1), LDA )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYA), N, Q(I,I+IB+1), LDQ, ONE,
$ A(1,I+IB+1), LDA )
CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYA+NIB), N, B(I+IB+1,I), LDB, ONE,
$ A(1,I+IB+1), LDA )
C
C Update the submatrix Q(i+ib:n,i+1+ib:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, Q(I+IB,I), LDQ, DWORK(PXQ+NB+1), N,
$ ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, A(I+IB,I), LDA, DWORK(PXQ+NIB+NB+1), N,
$ ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYQ+NB), N,
$ Q(I,I+IB+1), LDQ, ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No Transpose', 'Transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYQ+NIB+NB), N,
$ B(I+IB+1,I), LDB, ONE, Q(I+IB,I+IB+1), LDQ )
C
C Update the matrix G.
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, Q(I+IB,I), LDQ, DWORK(PXG), N, ONE,
$ G(I+IB,1), LDG )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, A(I+IB,I), LDA, DWORK(PXG+NIB), N, ONE,
$ G(I+IB,1), LDG )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYG), N, Q(I,I+IB+1), LDQ, ONE,
$ G(1,I+IB+1), LDG )
CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYG+NIB), N, B(I+IB+1,I), LDB, ONE,
$ G(1,I+IB+1), LDG )
C
C Update the submatrix B(1:n,i+ib:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB+1,
$ IB, ONE, DWORK(PXB), N, Q(I+IB,I), LDQ,
$ ONE, B(1,I+IB), LDB )
CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB+1, IB,
$ ONE, DWORK(PXB+NIB), N, A(I+IB,I), LDA, ONE,
$ B(1,I+IB), LDB )
CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N-I-IB+1,
$ IB, ONE, Q(I,I+IB+1), LDQ, DWORK(PYB+NB), N,
$ ONE, B(I+IB+1,I+IB), LDB )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N-I-IB+1,
$ IB, ONE, B(I+IB+1,I), LDB, DWORK(PYB+NIB+NB), N,
$ ONE, B(I+IB+1,I+IB), LDB )
40 CONTINUE
C
ELSE
DO 50 I = ILO, N-NX-1, NB
IB = MIN( NB, N-I )
NIB = N*IB
C
C Reduce rows and columns i:i+nb-1 to symplectic URV form and
C return the matrices XA, XB, XG, XQ, YA, YB, YG and YQ which
C are needed to update the unreduced parts of the matrices.
C
CALL MB03XU( LTRA, LTRB, N-I+1, I-1, IB, A(1,I), LDA,
$ B(I,1), LDB, G, LDG, Q(I,I), LDQ, DWORK(PXA),
$ N, DWORK(PXB), N, DWORK(PXG), N, DWORK(PXQ), N,
$ DWORK(PYA), N, DWORK(PYB), N, DWORK(PYG), N,
$ DWORK(PYQ), N, CSL(2*I-1), CSR(2*I-1), TAUL(I),
$ TAUR(I), DWORK(PDW) )
C
C Update the submatrix A(1:n,i+1+ib:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, Q(I+IB,I), LDQ, DWORK(PXA+NB+1), N,
$ ONE, A(I+IB,I+IB+1), LDA )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, A(I+IB,I), LDA, DWORK(PXA+NIB+NB+1), N,
$ ONE, A(I+IB,I+IB+1), LDA )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYA), N, Q(I,I+IB+1), LDQ, ONE,
$ A(1,I+IB+1), LDA )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYA+NIB), N, B(I,I+IB+1), LDB, ONE,
$ A(1,I+IB+1), LDA )
C
C Update the submatrix Q(i+ib:n,i+1+ib:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, Q(I+IB,I), LDQ, DWORK(PXQ+NB+1), N,
$ ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
$ IB, ONE, A(I+IB,I), LDA, DWORK(PXQ+NIB+NB+1), N,
$ ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYQ+NB), N,
$ Q(I,I+IB+1), LDQ, ONE, Q(I+IB,I+IB+1), LDQ )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYQ+NIB+NB), N,
$ B(I,I+IB+1), LDB, ONE, Q(I+IB,I+IB+1), LDQ )
C
C Update the matrix G.
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, Q(I+IB,I), LDQ, DWORK(PXG), N, ONE,
$ G(I+IB,1), LDG )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, A(I+IB,I), LDA, DWORK(PXG+NIB), N, ONE,
$ G(I+IB,1), LDG )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYG), N, Q(I,I+IB+1), LDQ, ONE,
$ G(1,I+IB+1), LDG )
CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
$ ONE, DWORK(PYG+NIB), N, B(I,I+IB+1), LDB, ONE,
$ G(1,I+IB+1), LDG )
C
C Update the submatrix B(i+ib:n,1:n).
C
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N,
$ IB, ONE, Q(I+IB,I), LDQ, DWORK(PXB), N,
$ ONE, B(I+IB,1), LDB )
CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
$ ONE, A(I+IB,I), LDA, DWORK(PXB+NIB), N, ONE,
$ B(I+IB,1), LDB )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYB+NB), N, Q(I,I+IB+1),
$ LDQ, ONE, B(I+IB,I+IB+1), LDB )
CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
$ N-I-IB, IB, ONE, DWORK(PYB+NIB+NB), N,
$ B(I,I+IB+1), LDB, ONE, B(I+IB,I+IB+1), LDB )
50 CONTINUE
END IF
C
C Unblocked code to reduce the rest of the matrices.
C
CALL MB04TS( TRANA, TRANB, N, I, A, LDA, B, LDB, G, LDG, Q, LDQ,
$ CSL, CSR, TAUL, TAUR, DWORK, LDWORK, IERR )
C
DWORK(1) = DBLE( WRKOPT )
C
RETURN
C *** Last line of MB04TB ***
END
|