File: MB04TB.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (677 lines) | stat: -rw-r--r-- 28,502 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
      SUBROUTINE MB04TB( TRANA, TRANB, N, ILO, A, LDA, B, LDB, G, LDG,
     $                   Q, LDQ, CSL, CSR, TAUL, TAUR, DWORK, LDWORK,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute a symplectic URV (SURV) decomposition of a real
C     2N-by-2N matrix H,
C
C            [ op(A)   G   ]                 [ op(R11)   R12   ]
C        H = [             ] = U R V'  = U * [                 ] * V' ,
C            [  Q    op(B) ]                 [   0     op(R22) ]
C
C     where A, B, G, Q, R12 are real N-by-N matrices, op(R11) is a real
C     N-by-N upper triangular matrix, op(R22) is a real N-by-N lower
C     Hessenberg matrix and U, V are 2N-by-2N orthogonal symplectic
C     matrices. Blocked version.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TRANA   CHARACTER*1
C             Specifies the form of op( A ) as follows:
C             = 'N':  op( A ) = A;
C             = 'T':  op( A ) = A';
C             = 'C':  op( A ) = A'.
C
C     TRANB   CHARACTER*1
C             Specifies the form of op( B ) as follows:
C             = 'N':  op( B ) = B;
C             = 'T':  op( B ) = B';
C             = 'C':  op( B ) = B'.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A. N >= 0.
C
C     ILO     (input) INTEGER
C             It is assumed that op(A) is already upper triangular,
C             op(B) is lower triangular and Q is zero in rows and
C             columns 1:ILO-1. ILO is normally set by a previous call
C             to MB04DD; otherwise it should be set to 1.
C             1 <= ILO <= N, if N > 0; ILO=1, if N=0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix A.
C             On exit, the leading N-by-N part of this array contains
C             the triangular matrix R11, and in the zero part
C             information about the elementary reflectors used to
C             compute the SURV decomposition.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix B.
C             On exit, the leading N-by-N part of this array contains
C             the Hessenberg matrix R22, and in the zero part
C             information about the elementary reflectors used to
C             compute the SURV decomposition.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= MAX(1,N).
C
C     G       (input/output) DOUBLE PRECISION array, dimension (LDG,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix G.
C             On exit, the leading N-by-N part of this array contains
C             the matrix R12.
C
C     LDG     INTEGER
C             The leading dimension of the array G.  LDG >= MAX(1,N).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C             On entry, the leading N-by-N part of this array must
C             contain the matrix Q.
C             On exit, the leading N-by-N part of this array contains
C             information about the elementary reflectors used to
C             compute the SURV decomposition.
C
C     LDQ     INTEGER
C             The leading dimension of the array Q.  LDQ >= MAX(1,N).
C
C     CSL     (output) DOUBLE PRECISION array, dimension (2N)
C             On exit, the first 2N elements of this array contain the
C             cosines and sines of the symplectic Givens rotations
C             applied from the left-hand side used to compute the SURV
C             decomposition.
C
C     CSR     (output) DOUBLE PRECISION array, dimension (2N-2)
C             On exit, the first 2N-2 elements of this array contain the
C             cosines and sines of the symplectic Givens rotations
C             applied from the right-hand side used to compute the SURV
C             decomposition.
C
C     TAUL    (output) DOUBLE PRECISION array, dimension (N)
C             On exit, the first N elements of this array contain the
C             scalar factors of some of the elementary reflectors
C             applied form the left-hand side.
C
C     TAUR    (output) DOUBLE PRECISION array, dimension (N-1)
C             On exit, the first N-1 elements of this array contain the
C             scalar factors of some of the elementary reflectors
C             applied form the right-hand side.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK, (16*N + 5)*NB, where NB is the optimal
C             block size determined by the function UE01MD.
C             On exit, if  INFO = -16,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= MAX(1,N).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The matrices U and V are represented as products of symplectic
C     reflectors and Givens rotators
C
C     U = diag( HU(1),HU(1) )  GU(1)  diag( FU(1),FU(1) )
C         diag( HU(2),HU(2) )  GU(2)  diag( FU(2),FU(2) )
C                              ....
C         diag( HU(n),HU(n) )  GU(n)  diag( FU(n),FU(n) ),
C
C     V = diag( HV(1),HV(1) )       GV(1)   diag( FV(1),FV(1) )
C         diag( HV(2),HV(2) )       GV(2)   diag( FV(2),FV(2) )
C                                   ....
C         diag( HV(n-1),HV(n-1) )  GV(n-1)  diag( FV(n-1),FV(n-1) ).
C
C     Each HU(i) has the form
C
C           HU(i) = I - tau * v * v'
C
C     where tau is a real scalar, and v is a real vector with
C     v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in
C     Q(i+1:n,i), and tau in Q(i,i).
C
C     Each FU(i) has the form
C
C           FU(i) = I - nu * w * w'
C
C     where nu is a real scalar, and w is a real vector with
C     w(1:i-1) = 0 and w(i) = 1; w(i+1:n) is stored on exit in
C     A(i+1:n,i), if op(A) = 'N', and in A(i,i+1:n), otherwise. The
C     scalar nu is stored in TAUL(i).
C
C     Each GU(i) is a Givens rotator acting on rows i and n+i,
C     where the cosine is stored in CSL(2*i-1) and the sine in
C     CSL(2*i).
C
C     Each HV(i) has the form
C
C           HV(i) = I - tau * v * v'
C
C     where tau is a real scalar, and v is a real vector with
C     v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
C     Q(i,i+2:n), and tau in Q(i,i+1).
C
C     Each FV(i) has the form
C
C           FV(i) = I - nu * w * w'
C
C     where nu is a real scalar, and w is a real vector with
C     w(1:i) = 0 and w(i+1) = 1; w(i+2:n) is stored on exit in
C     B(i,i+2:n), if op(B) = 'N', and in B(i+2:n,i), otherwise.
C     The scalar nu is stored in TAUR(i).
C
C     Each GV(i) is a Givens rotator acting on columns i+1 and n+i+1,
C     where the cosine is stored in CSR(2*i-1) and the sine in
C     CSR(2*i).
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires 80/3*N**3 + ( 64*NB + 77 )*N**2 +
C     ( -16*NB + 48 )*NB*N + O(N) floating point operations, where
C     NB is the used block size, and is numerically backward stable.
C
C     REFERENCES
C
C     [1] Benner, P., Mehrmann, V., and Xu, H.
C         A numerically stable, structure preserving method for
C         computing the eigenvalues of real Hamiltonian or symplectic
C         pencils. Numer. Math., Vol 78 (3), pp. 329-358, 1998.
C
C     [2] Kressner, D.
C         Block algorithms for orthogonal symplectic factorizations.
C         BIT, 43 (4), pp. 775-790, 2003.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, June 2008 (SLICOT version of the HAPACK routine DGESUB).
C
C     KEYWORDS
C
C     Elementary matrix operations, Matrix decompositions, Hamiltonian
C     matrix
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         TRANA, TRANB
      INTEGER           ILO, INFO, LDA, LDB, LDG, LDQ, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), CSL(*), CSR(*), DWORK(*),
     $                  G(LDG,*), Q(LDQ,*), TAUL(*), TAUR(*)
C     .. Local Scalars ..
      LOGICAL           LTRA, LTRB
      INTEGER           I, IB, IERR, NB, NBMIN, NH, NIB, NNB, NX, PDW,
     $                  PXA, PXB, PXG, PXQ, PYA, PYB, PYG, PYQ, WRKOPT
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           UE01MD
      EXTERNAL          LSAME, UE01MD
C     .. External Subroutines ..
      EXTERNAL          DGEMM, MB03XU, MB04TS, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX, MIN
C
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      INFO = 0
      LTRA = LSAME( TRANA, 'T' ) .OR. LSAME( TRANA, 'C' )
      LTRB = LSAME( TRANB, 'T' ) .OR. LSAME( TRANB, 'C' )
      IF ( .NOT.LTRA .AND. .NOT.LSAME( TRANA, 'N' ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.LTRB .AND. .NOT.LSAME( TRANB, 'N' ) ) THEN
         INFO = -2
      ELSE IF ( N.LT.0 ) THEN
         INFO = -3
      ELSE IF ( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF ( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF ( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF ( LDG.LT.MAX( 1, N ) ) THEN
         INFO = -10
      ELSE IF ( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF ( LDWORK.LT.MAX( 1, N ) ) THEN
         DWORK(1) = DBLE( MAX( 1, N ) )
         INFO = -18
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB04TB', -INFO )
         RETURN
      END IF
C
C     Set elements 1:ILO-1 of CSL, CSR, TAUL and TAUR to their default
C     values.
C
      DO 10  I = 1, ILO - 1
         CSL(2*I-1) = ONE
         CSL(2*I) = ZERO
         CSR(2*I-1) = ONE
         CSR(2*I) = ZERO
         TAUL(I) = ZERO
         TAUR(I) = ZERO
   10 CONTINUE
C
C     Quick return if possible.
C
      NH = N - ILO + 1
      IF ( NH.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Determine the block size.
C
      NB = UE01MD( 1, 'MB04TB', TRANA // TRANB, N, ILO, -1 )
      NBMIN = 2
      WRKOPT = N
      IF ( NB.GT.1 .AND. NB.LT.NH ) THEN
C
C        Determine when to cross over from blocked to unblocked code.
C
         NX = MAX( NB, UE01MD( 3, 'MB04TB', TRANA // TRANB, N, ILO, -1 )
     $           )
         IF ( NX.LT.NH ) THEN
C
C           Check whether workspace is large enough for blocked code.
C
            WRKOPT = 16*N*NB + 5*NB
            IF ( LDWORK.LT.WRKOPT ) THEN
C
C              Not enough workspace available. Determine minimum value
C              of NB, and reduce NB.
C
               NBMIN = MAX( 2, UE01MD( 2, 'MB04TB', TRANA // TRANB, N,
     $                                 ILO, -1 ) )
               NB = LDWORK / ( 16*N + 5 )
            END IF
         END IF
      END IF
C
      NNB = N*NB
      PYB = 1
      PYQ = PYB + 2*NNB
      PYA = PYQ + 2*NNB
      PYG = PYA + 2*NNB
      PXQ = PYG + 2*NNB
      PXA = PXQ + 2*NNB
      PXG = PXA + 2*NNB
      PXB = PXG + 2*NNB
      PDW = PXB + 2*NNB
C
      IF ( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
C
C        Use unblocked code.
C
         I = ILO
C
      ELSE IF ( LTRA .AND. LTRB ) THEN
         DO 20  I = ILO, N-NX-1, NB
            IB = MIN( NB, N-I )
            NIB = N*IB
C
C           Reduce rows and columns i:i+nb-1 to symplectic URV form and
C           return the matrices XA, XB, XG, XQ, YA, YB, YG and YQ which
C           are needed to update the unreduced parts of the matrices.
C
            CALL MB03XU( LTRA, LTRB, N-I+1, I-1, IB, A(I,1), LDA,
     $                   B(1,I), LDB, G, LDG, Q(I,I), LDQ, DWORK(PXA),
     $                   N, DWORK(PXB), N, DWORK(PXG), N, DWORK(PXQ), N,
     $                   DWORK(PYA), N, DWORK(PYB), N, DWORK(PYG), N,
     $                   DWORK(PYQ), N, CSL(2*I-1), CSR(2*I-1), TAUL(I),
     $                   TAUR(I), DWORK(PDW) )
C
C           Update the submatrix A(i+1+ib:n,1:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N-I-IB+1,
     $                  IB, ONE, DWORK(PXA+NB+1), N, Q(I+IB,I), LDQ,
     $                  ONE, A(I+IB+1,I+IB), LDA )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB,
     $                  N-I-IB+1, IB, ONE, DWORK(PXA+NIB+NB+1), N,
     $                  A(I,I+IB), LDA, ONE, A(I+IB+1,I+IB), LDA )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N, IB,
     $                  ONE, Q(I,I+IB+1), LDQ, DWORK(PYA), N, ONE,
     $                  A(I+IB+1,1), LDA )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N, IB,
     $                  ONE, B(I+IB+1,I), LDB, DWORK(PYA+NIB), N, ONE,
     $                  A(I+IB+1,1), LDA )
C
C           Update the submatrix Q(i+ib:n,i+1+ib:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, Q(I+IB,I), LDQ, DWORK(PXQ+NB+1), N,
     $                  ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, A(I,I+IB), LDA, DWORK(PXQ+NIB+NB+1), N,
     $                  ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYQ+NB), N,
     $                  Q(I,I+IB+1), LDQ, ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYQ+NIB+NB), N,
     $                  B(I+IB+1,I), LDB, ONE, Q(I+IB,I+IB+1), LDQ )
C
C           Update the matrix G.
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, Q(I+IB,I), LDQ, DWORK(PXG), N, ONE,
     $                  G(I+IB,1), LDG )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, A(I,I+IB), LDA, DWORK(PXG+NIB), N, ONE,
     $                  G(I+IB,1), LDG )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYG), N, Q(I,I+IB+1), LDQ, ONE,
     $                  G(1,I+IB+1), LDG )
            CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYG+NIB), N, B(I+IB+1,I), LDB, ONE,
     $                  G(1,I+IB+1), LDG )
C
C           Update the submatrix B(1:n,i+ib:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB+1,
     $                  IB, ONE, DWORK(PXB), N, Q(I+IB,I), LDQ,
     $                  ONE, B(1,I+IB), LDB )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB+1, IB,
     $                  ONE, DWORK(PXB+NIB), N, A(I,I+IB), LDA, ONE,
     $                  B(1,I+IB), LDB )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N-I-IB+1,
     $                  IB, ONE, Q(I,I+IB+1), LDQ, DWORK(PYB+NB), N,
     $                  ONE, B(I+IB+1,I+IB), LDB )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N-I-IB+1,
     $                  IB, ONE, B(I+IB+1,I), LDB, DWORK(PYB+NIB+NB), N,
     $                  ONE, B(I+IB+1,I+IB), LDB )
   20    CONTINUE
C
      ELSE IF ( LTRA ) THEN
         DO 30  I = ILO, N-NX-1, NB
            IB = MIN( NB, N-I )
            NIB = N*IB
C
C           Reduce rows and columns i:i+nb-1 to symplectic URV form and
C           return the matrices XA, XB, XG, XQ, YA, YB, YG and YQ which
C           are needed to update the unreduced parts of the matrices.
C
            CALL MB03XU( LTRA, LTRB, N-I+1, I-1, IB, A(I,1), LDA,
     $                   B(I,1), LDB, G, LDG, Q(I,I), LDQ, DWORK(PXA),
     $                   N, DWORK(PXB), N, DWORK(PXG), N, DWORK(PXQ), N,
     $                   DWORK(PYA), N, DWORK(PYB), N, DWORK(PYG), N,
     $                   DWORK(PYQ), N, CSL(2*I-1), CSR(2*I-1), TAUL(I),
     $                   TAUR(I), DWORK(PDW) )
C
C           Update the submatrix A(i+1+ib:n,1:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N-I-IB+1,
     $                  IB, ONE, DWORK(PXA+NB+1), N, Q(I+IB,I), LDQ,
     $                  ONE, A(I+IB+1,I+IB), LDA )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB,
     $                  N-I-IB+1, IB, ONE, DWORK(PXA+NIB+NB+1), N,
     $                  A(I,I+IB), LDA, ONE, A(I+IB+1,I+IB), LDA )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N, IB,
     $                  ONE, Q(I,I+IB+1), LDQ, DWORK(PYA), N, ONE,
     $                  A(I+IB+1,1), LDA )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N, IB,
     $                  ONE, B(I,I+IB+1), LDB, DWORK(PYA+NIB), N, ONE,
     $                  A(I+IB+1,1), LDA )
C
C           Update the submatrix Q(i+ib:n,i+1+ib:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, Q(I+IB,I), LDQ, DWORK(PXQ+NB+1), N,
     $                  ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, A(I,I+IB), LDA, DWORK(PXQ+NIB+NB+1), N,
     $                  ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYQ+NB), N,
     $                  Q(I,I+IB+1), LDQ, ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYQ+NIB+NB), N,
     $                  B(I,I+IB+1), LDB, ONE, Q(I+IB,I+IB+1), LDQ )
C
C           Update the matrix G.
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, Q(I+IB,I), LDQ, DWORK(PXG), N, ONE,
     $                  G(I+IB,1), LDG )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, A(I,I+IB), LDA, DWORK(PXG+NIB), N, ONE,
     $                  G(I+IB,1), LDG )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYG), N, Q(I,I+IB+1), LDQ, ONE,
     $                  G(1,I+IB+1), LDG )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYG+NIB), N, B(I,I+IB+1), LDB, ONE,
     $                  G(1,I+IB+1), LDG )
C
C           Update the submatrix B(i+ib:n,1:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N,
     $                  IB, ONE, Q(I+IB,I), LDQ, DWORK(PXB), N,
     $                  ONE, B(I+IB,1), LDB )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, A(I,I+IB), LDA, DWORK(PXB+NIB), N, ONE,
     $                  B(I+IB,1), LDB )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYB+NB), N, Q(I,I+IB+1),
     $                  LDQ, ONE, B(I+IB,I+IB+1), LDB )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYB+NIB+NB), N,
     $                  B(I,I+IB+1), LDB, ONE, B(I+IB,I+IB+1), LDB )
   30    CONTINUE
C
      ELSE IF ( LTRB ) THEN
         DO 40  I = ILO, N-NX-1, NB
            IB = MIN( NB, N-I )
            NIB = N*IB
C
C           Reduce rows and columns i:i+nb-1 to symplectic URV form and
C           return the matrices XA, XB, XG, XQ, YA, YB, YG and YQ which
C           are needed to update the unreduced parts of the matrices.
C
            CALL MB03XU( LTRA, LTRB, N-I+1, I-1, IB, A(1,I), LDA,
     $                   B(1,I), LDB, G, LDG, Q(I,I), LDQ, DWORK(PXA),
     $                   N, DWORK(PXB), N, DWORK(PXG), N, DWORK(PXQ), N,
     $                   DWORK(PYA), N, DWORK(PYB), N, DWORK(PYG), N,
     $                   DWORK(PYQ), N, CSL(2*I-1), CSR(2*I-1), TAUL(I),
     $                   TAUR(I), DWORK(PDW) )
C
C           Update the submatrix A(1:n,i+1+ib:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, Q(I+IB,I), LDQ, DWORK(PXA+NB+1), N,
     $                  ONE, A(I+IB,I+IB+1), LDA )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, A(I+IB,I), LDA, DWORK(PXA+NIB+NB+1), N,
     $                  ONE, A(I+IB,I+IB+1), LDA )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYA), N, Q(I,I+IB+1), LDQ, ONE,
     $                  A(1,I+IB+1), LDA )
            CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYA+NIB), N, B(I+IB+1,I), LDB, ONE,
     $                  A(1,I+IB+1), LDA )
C
C           Update the submatrix Q(i+ib:n,i+1+ib:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, Q(I+IB,I), LDQ, DWORK(PXQ+NB+1), N,
     $                  ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, A(I+IB,I), LDA, DWORK(PXQ+NIB+NB+1), N,
     $                  ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYQ+NB), N,
     $                  Q(I,I+IB+1), LDQ, ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No Transpose', 'Transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYQ+NIB+NB), N,
     $                  B(I+IB+1,I), LDB, ONE, Q(I+IB,I+IB+1), LDQ )
C
C           Update the matrix G.
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, Q(I+IB,I), LDQ, DWORK(PXG), N, ONE,
     $                  G(I+IB,1), LDG )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, A(I+IB,I), LDA, DWORK(PXG+NIB), N, ONE,
     $                  G(I+IB,1), LDG )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYG), N, Q(I,I+IB+1), LDQ, ONE,
     $                  G(1,I+IB+1), LDG )
            CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYG+NIB), N, B(I+IB+1,I), LDB, ONE,
     $                  G(1,I+IB+1), LDG )
C
C           Update the submatrix B(1:n,i+ib:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB+1,
     $                  IB, ONE, DWORK(PXB), N, Q(I+IB,I), LDQ,
     $                  ONE, B(1,I+IB), LDB )
            CALL DGEMM( 'No transpose', 'Transpose', N, N-I-IB+1, IB,
     $                  ONE, DWORK(PXB+NIB), N, A(I+IB,I), LDA, ONE,
     $                  B(1,I+IB), LDB )
            CALL DGEMM( 'Transpose', 'Transpose', N-I-IB, N-I-IB+1,
     $                  IB, ONE, Q(I,I+IB+1), LDQ, DWORK(PYB+NB), N,
     $                  ONE, B(I+IB+1,I+IB), LDB )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB, N-I-IB+1,
     $                  IB, ONE, B(I+IB+1,I), LDB, DWORK(PYB+NIB+NB), N,
     $                  ONE, B(I+IB+1,I+IB), LDB )
   40    CONTINUE
C
      ELSE
         DO 50  I = ILO, N-NX-1, NB
            IB = MIN( NB, N-I )
            NIB = N*IB
C
C           Reduce rows and columns i:i+nb-1 to symplectic URV form and
C           return the matrices XA, XB, XG, XQ, YA, YB, YG and YQ which
C           are needed to update the unreduced parts of the matrices.
C
            CALL MB03XU( LTRA, LTRB, N-I+1, I-1, IB, A(1,I), LDA,
     $                   B(I,1), LDB, G, LDG, Q(I,I), LDQ, DWORK(PXA),
     $                   N, DWORK(PXB), N, DWORK(PXG), N, DWORK(PXQ), N,
     $                   DWORK(PYA), N, DWORK(PYB), N, DWORK(PYG), N,
     $                   DWORK(PYQ), N, CSL(2*I-1), CSR(2*I-1), TAUL(I),
     $                   TAUR(I), DWORK(PDW) )
C
C           Update the submatrix A(1:n,i+1+ib:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, Q(I+IB,I), LDQ, DWORK(PXA+NB+1), N,
     $                  ONE, A(I+IB,I+IB+1), LDA )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, A(I+IB,I), LDA, DWORK(PXA+NIB+NB+1), N,
     $                  ONE, A(I+IB,I+IB+1), LDA )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYA), N, Q(I,I+IB+1), LDQ, ONE,
     $                  A(1,I+IB+1), LDA )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYA+NIB), N, B(I,I+IB+1), LDB, ONE,
     $                  A(1,I+IB+1), LDA )
C
C           Update the submatrix Q(i+ib:n,i+1+ib:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, Q(I+IB,I), LDQ, DWORK(PXQ+NB+1), N,
     $                  ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N-I-IB,
     $                  IB, ONE, A(I+IB,I), LDA, DWORK(PXQ+NIB+NB+1), N,
     $                  ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYQ+NB), N,
     $                  Q(I,I+IB+1), LDQ, ONE, Q(I+IB,I+IB+1), LDQ )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYQ+NIB+NB), N,
     $                  B(I,I+IB+1), LDB, ONE, Q(I+IB,I+IB+1), LDQ )
C
C           Update the matrix G.
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, Q(I+IB,I), LDQ, DWORK(PXG), N, ONE,
     $                  G(I+IB,1), LDG )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, A(I+IB,I), LDA, DWORK(PXG+NIB), N, ONE,
     $                  G(I+IB,1), LDG )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYG), N, Q(I,I+IB+1), LDQ, ONE,
     $                  G(1,I+IB+1), LDG )
            CALL DGEMM( 'No transpose', 'No transpose', N, N-I-IB, IB,
     $                  ONE, DWORK(PYG+NIB), N, B(I,I+IB+1), LDB, ONE,
     $                  G(1,I+IB+1), LDG )
C
C           Update the submatrix B(i+ib:n,1:n).
C
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N,
     $                  IB, ONE, Q(I+IB,I), LDQ, DWORK(PXB), N,
     $                  ONE, B(I+IB,1), LDB )
            CALL DGEMM( 'No transpose', 'Transpose', N-I-IB+1, N, IB,
     $                  ONE, A(I+IB,I), LDA, DWORK(PXB+NIB), N, ONE,
     $                  B(I+IB,1), LDB )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYB+NB), N, Q(I,I+IB+1),
     $                  LDQ, ONE, B(I+IB,I+IB+1), LDB )
            CALL DGEMM( 'No transpose', 'No transpose', N-I-IB+1,
     $                  N-I-IB, IB, ONE, DWORK(PYB+NIB+NB), N,
     $                  B(I,I+IB+1), LDB, ONE, B(I+IB,I+IB+1), LDB )
   50    CONTINUE
      END IF
C
C     Unblocked code to reduce the rest of the matrices.
C
      CALL MB04TS( TRANA, TRANB, N, I, A, LDA, B, LDB, G, LDG, Q, LDQ,
     $             CSL, CSR, TAUL, TAUR, DWORK, LDWORK, IERR )
C
      DWORK(1) = DBLE( WRKOPT )
C
      RETURN
C *** Last line of MB04TB ***
      END