1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
SUBROUTINE MB04TX( UPDATQ, UPDATZ, M, N, NBLCKS, INUK, IMUK, A,
$ LDA, E, LDE, Q, LDQ, Z, LDZ, MNEI )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To separate the pencils s*E(eps)-A(eps) and s*E(inf)-A(inf) in
C s*E(eps,inf)-A(eps,inf) using Algorithm 3.3.3 in [1].
C
C On entry, it is assumed that the M-by-N matrices A and E have
C been obtained after applying the Algorithms 3.2.1 and 3.3.1 to
C the pencil s*E - A as described in [1], i.e.
C
C | s*E(eps,inf)-A(eps,inf) | X |
C Q'(s*E - A)Z = |-------------------------|-------------|
C | 0 | s*E(r)-A(r) |
C
C Here the pencil s*E(eps,inf)-A(eps,inf) is in staircase form.
C This pencil contains all Kronecker column indices and infinite
C elementary divisors of the pencil s*E - A.
C The pencil s*E(r)-A(r) contains all Kronecker row indices and
C finite elementary divisors of s*E - A.
C Furthermore, the submatrices having full row and column rank in
C the pencil s*E(eps,inf)-A(eps,inf) are assumed to be
C triangularized.
C
C On exit, the result then is
C
C Q'(s*E - A)Z =
C
C | s*E(eps)-A(eps) | X | X |
C |-----------------|-----------------|-------------|
C | 0 | s*E(inf)-A(inf) | X |
C |===================================|=============|
C | | |
C | 0 | s*E(r)-A(r) |
C
C Note that the pencil s*E(r)-A(r) is not reduced further.
C
C ARGUMENTS
C
C Mode Parameters
C
C UPDATQ LOGICAL
C Indicates whether the user wishes to accumulate in a
C matrix Q the orthogonal row transformations, as follows:
C = .FALSE.: Do not form Q;
C = .TRUE.: The given matrix Q is updated by the orthogonal
C row transformations used in the reduction.
C
C UPDATZ LOGICAL
C Indicates whether the user wishes to accumulate in a
C matrix Z the orthogonal column transformations, as
C follows:
C = .FALSE.: Do not form Z;
C = .TRUE.: The given matrix Z is updated by the orthogonal
C column transformations used in the reduction.
C
C Input/Output Parameters
C
C M (input) INTEGER
C Number of rows of A and E. M >= 0.
C
C N (input) INTEGER
C Number of columns of A and E. N >= 0.
C
C NBLCKS (input/output) INTEGER
C On entry, the number of submatrices having full row rank
C (possibly zero) in A(eps,inf).
C On exit, the input value has been reduced by one, if the
C last submatrix is a 0-by-0 (empty) matrix.
C
C INUK (input/output) INTEGER array, dimension (NBLCKS)
C On entry, this array contains the row dimensions nu(k),
C (k=1, 2, ..., NBLCKS) of the submatrices having full row
C rank in the pencil s*E(eps,inf)-A(eps,inf).
C On exit, this array contains the row dimensions nu(k),
C (k=1, 2, ..., NBLCKS) of the submatrices having full row
C rank in the pencil s*E(eps)-A(eps).
C
C IMUK (input/output) INTEGER array, dimension (NBLCKS)
C On entry, this array contains the column dimensions mu(k),
C (k=1, 2, ..., NBLCKS) of the submatrices having full
C column rank in the pencil s*E(eps,inf)-A(eps,inf).
C On exit, this array contains the column dimensions mu(k),
C (k=1, 2, ..., NBLCKS) of the submatrices having full
C column rank in the pencil s*E(eps)-A(eps).
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, this array contains the matrix A to be reduced.
C On exit, it contains the transformed matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,M).
C
C E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C On entry, this array contains the matrix E to be reduced.
C On exit, it contains the transformed matrix E.
C
C LDE INTEGER
C The leading dimension of array E. LDE >= MAX(1,M).
C
C Q (input/output) DOUBLE PRECISION array, dimension (LDQ,*)
C On entry, if UPDATQ = .TRUE., then the leading M-by-M
C part of this array must contain a given matrix Q (e.g.
C from a previous call to another SLICOT routine), and on
C exit, the leading M-by-M part of this array contains the
C product of the input matrix Q and the row transformation
C matrix that has transformed the rows of the matrices A
C and E.
C If UPDATQ = .FALSE., the array Q is not referenced and
C can be supplied as a dummy array (i.e. set parameter
C LDQ = 1 and declare this array to be Q(1,1) in the calling
C program).
C
C LDQ INTEGER
C The leading dimension of array Q. If UPDATQ = .TRUE.,
C LDQ >= MAX(1,M); if UPDATQ = .FALSE., LDQ >= 1.
C
C Z (input/output) DOUBLE PRECISION array, dimension (LDZ,*)
C On entry, if UPDATZ = .TRUE., then the leading N-by-N
C part of this array must contain a given matrix Z (e.g.
C from a previous call to another SLICOT routine), and on
C exit, the leading N-by-N part of this array contains the
C product of the input matrix Z and the column
C transformation matrix that has transformed the columns of
C the matrices A and E.
C If UPDATZ = .FALSE., the array Z is not referenced and
C can be supplied as a dummy array (i.e. set parameter
C LDZ = 1 and declare this array to be Z(1,1) in the calling
C program).
C
C LDZ INTEGER
C The leading dimension of array Z. If UPDATZ = .TRUE.,
C LDZ >= MAX(1,N); if UPDATZ = .FALSE., LDZ >= 1.
C
C MNEI (output) INTEGER array, dimension (4)
C MNEI(1) = MEPS = row dimension of s*E(eps)-A(eps),
C MNEI(2) = NEPS = column dimension of s*E(eps)-A(eps),
C MNEI(3) = MINF = row dimension of s*E(inf)-A(inf),
C MNEI(4) = NINF = column dimension of s*E(inf)-A(inf).
C
C REFERENCES
C
C [1] Beelen, Th.
C New Algorithms for Computing the Kronecker structure of a
C Pencil with Applications to Systems and Control Theory.
C Ph.D.Thesis, Eindhoven University of Technology,
C The Netherlands, 1987.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Apr. 1997.
C Supersedes Release 2.0 routine MB04FX by Th.G.J. Beelen,
C Philips Glass Eindhoven, Holland.
C
C REVISIONS
C
C June 13, 1997, V. Sima.
C November 24, 1997, A. Varga: initialization of MNEI to 0, instead
C of ZERO.
C
C KEYWORDS
C
C Generalized eigenvalue problem, Kronecker indices, orthogonal
C transformation, staircase form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
LOGICAL UPDATQ, UPDATZ
INTEGER LDA, LDE, LDQ, LDZ, M, N, NBLCKS
C .. Array Arguments ..
INTEGER IMUK(*), INUK(*), MNEI(4)
DOUBLE PRECISION A(LDA,*), E(LDE,*), Q(LDQ,*), Z(LDZ,*)
C .. Local Scalars ..
INTEGER CA, CE, CJA, CJE, IP, ISMUK, ISNUK, K, MEPS,
$ MINF, MUK, MUKP1, MUP, MUP1, NEPS, NINF, NUK,
$ NUP, RA, RJE, SK1P1, TK1P1, TP1
DOUBLE PRECISION SC, SS
C .. External Subroutines ..
EXTERNAL DROTG, MB04TU
C .. Executable Statements ..
C
MNEI(1) = 0
MNEI(2) = 0
MNEI(3) = 0
MNEI(4) = 0
IF ( M.LE.0 .OR. N.LE.0 )
$ RETURN
C
C Initialisation.
C
ISMUK = 0
ISNUK = 0
C
DO 20 K = 1, NBLCKS
ISMUK = ISMUK + IMUK(K)
ISNUK = ISNUK + INUK(K)
20 CONTINUE
C
C MEPS, NEPS are the dimensions of the pencil s*E(eps)-A(eps).
C MEPS = Sum(k=1,...,nblcks) NU(k),
C NEPS = Sum(k=1,...,nblcks) MU(k).
C MINF, NINF are the dimensions of the pencil s*E(inf)-A(inf).
C
MEPS = ISNUK
NEPS = ISMUK
MINF = 0
NINF = 0
C
C MUKP1 = mu(k+1). N.B. It is assumed that mu(NBLCKS + 1) = 0.
C
MUKP1 = 0
C
DO 120 K = NBLCKS, 1, -1
NUK = INUK(K)
MUK = IMUK(K)
C
C Reduce submatrix E(k,k+1) to square matrix.
C NOTE that always NU(k) >= MU(k+1) >= 0.
C
C WHILE ( NU(k) > MU(k+1) ) DO
40 IF ( NUK.GT.MUKP1 ) THEN
C
C sk1p1 = sum(i=k+1,...,p-1) NU(i)
C tk1p1 = sum(i=k+1,...,p-1) MU(i)
C ismuk = sum(i=1,...,k) MU(i)
C tp1 = sum(i=1,...,p-1) MU(i) = ismuk + tk1p1.
C
SK1P1 = 0
TK1P1 = 0
C
DO 100 IP = K + 1, NBLCKS
C
C Annihilate the elements originally present in the last
C row of E(k,p+1) and A(k,p).
C Start annihilating the first MU(p) - MU(p+1) elements by
C applying column Givens rotations plus interchanging
C elements.
C Use original bottom diagonal element of A(k,k) as pivot.
C Start position of pivot in A = (ra,ca).
C
TP1 = ISMUK + TK1P1
RA = ISNUK + SK1P1
CA = TP1
C
MUP = IMUK(IP)
NUP = INUK(IP)
MUP1 = NUP
C
DO 60 CJA = CA, CA + MUP - NUP - 1
C
C CJA = current column index of pivot in A.
C
CALL DROTG( A(RA,CJA), A(RA,CJA+1), SC, SS )
C
C Apply transformations to A- and E-matrix.
C Interchange columns simultaneously.
C Update column transformation matrix Z, if needed.
C
CALL MB04TU( RA-1, A(1,CJA), 1, A(1,CJA+1), 1, SC,
$ SS )
A(RA,CJA+1) = A(RA,CJA)
A(RA,CJA) = ZERO
CALL MB04TU( RA, E(1,CJA), 1, E(1,CJA+1), 1, SC, SS )
IF( UPDATZ ) CALL MB04TU( N, Z(1,CJA), 1, Z(1,CJA+1),
$ 1, SC, SS )
60 CONTINUE
C
C Annihilate the remaining elements originally present in
C the last row of E(k,p+1) and A(k,p) by alternatingly
C applying row and column rotations plus interchanging
C elements.
C Use diagonal elements of E(p,p+1) and original bottom
C diagonal element of A(k,k) as pivots, respectively.
C (re,ce) and (ra,ca) are the starting positions of the
C pivots in E and A.
C
CE = TP1 + MUP
CA = CE - MUP1 - 1
C
DO 80 RJE = RA + 1, RA + MUP1
C
C (RJE,CJE) = current position pivot in E.
C
CJE = CE + 1
CJA = CA + 1
C
C Determine the row transformations.
C Apply these transformations to E- and A-matrix.
C Interchange the rows simultaneously.
C Update row transformation matrix Q, if needed.
C
CALL DROTG( E(RJE,CJE), E(RJE-1,CJE), SC, SS )
CALL MB04TU( N-CJE, E(RJE,CJE+1), LDE, E(RJE-1,CJE+1),
$ LDE, SC, SS )
E(RJE-1,CJE) = E(RJE,CJE)
E(RJE,CJE) = ZERO
CALL MB04TU( N-CJA+1, A(RJE,CJA), LDA, A(RJE-1,CJA),
$ LDA, SC, SS )
IF( UPDATQ ) CALL MB04TU( M, Q(1,RJE), 1,
$ Q(1,RJE-1), 1, SC, SS )
C
C Determine the column transformations.
C Apply these transformations to A- and E-matrix.
C Interchange the columns simultaneously.
C Update column transformation matrix Z, if needed.
C
CALL DROTG( A(RJE,CJA), A(RJE,CJA+1), SC, SS )
CALL MB04TU( RJE-1, A(1,CJA), 1, A(1,CJA+1), 1, SC,
$ SS )
A(RJE,CJA+1) = A(RJE,CJA)
A(RJE,CJA) = ZERO
CALL MB04TU( RJE, E(1,CJA), 1, E(1,CJA+1), 1, SC, SS )
IF( UPDATZ ) CALL MB04TU( N, Z(1,CJA), 1, Z(1,CJA+1),
$ 1, SC, SS )
80 CONTINUE
C
SK1P1 = SK1P1 + NUP
TK1P1 = TK1P1 + MUP
C
100 CONTINUE
C
C Reduce A=A(eps,inf) and E=E(eps,inf) by ignoring their last
C row and right most column. The row and column ignored
C belong to the pencil s*E(inf)-A(inf).
C Redefine blocks in new A and E.
C
MUK = MUK - 1
NUK = NUK - 1
ISMUK = ISMUK - 1
ISNUK = ISNUK - 1
MEPS = MEPS - 1
NEPS = NEPS - 1
MINF = MINF + 1
NINF = NINF + 1
C
GO TO 40
END IF
C END WHILE 40
C
IMUK(K) = MUK
INUK(K) = NUK
C
C Now submatrix E(k,k+1) is square.
C
C Consider next submatrix (k:=k-1).
C
ISNUK = ISNUK - NUK
ISMUK = ISMUK - MUK
MUKP1 = MUK
120 CONTINUE
C
C If mu(NBLCKS) = 0, then the last submatrix counted in NBLCKS is
C a 0-by-0 (empty) matrix. This "matrix" must be removed.
C
IF ( IMUK(NBLCKS).EQ.0 ) NBLCKS = NBLCKS - 1
C
C Store dimensions of the pencils s*E(eps)-A(eps) and
C s*E(inf)-A(inf) in array MNEI.
C
MNEI(1) = MEPS
MNEI(2) = NEPS
MNEI(3) = MINF
MNEI(4) = NINF
C
RETURN
C *** Last line of MB04TX ***
END
|