1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
SUBROUTINE MB04TY( UPDATQ, UPDATZ, M, N, NBLCKS, INUK, IMUK, A,
$ LDA, E, LDE, Q, LDQ, Z, LDZ, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To perform the triangularization of the submatrices having full
C row and column rank in the pencil s*E(eps,inf)-A(eps,inf) below
C
C | s*E(eps,inf)-A(eps,inf) | X |
C s*E - A = |-------------------------|-------------| ,
C | 0 | s*E(r)-A(r) |
C
C using Algorithm 3.3.1 in [1].
C On entry, it is assumed that the M-by-N matrices A and E have
C been transformed to generalized Schur form by unitary
C transformations (see Algorithm 3.2.1 in [1]), and that the pencil
C s*E(eps,inf)-A(eps,inf) is in staircase form.
C This pencil contains all Kronecker column indices and infinite
C elementary divisors of the pencil s*E - A.
C The pencil s*E(r)-A(r) contains all Kronecker row indices and
C finite elementary divisors of s*E - A.
C
C ARGUMENTS
C
C Mode Parameters
C
C UPDATQ LOGICAL
C Indicates whether the user wishes to accumulate in a
C matrix Q the orthogonal row transformations, as follows:
C = .FALSE.: Do not form Q;
C = .TRUE.: The given matrix Q is updated by the orthogonal
C row transformations used in the reduction.
C
C UPDATZ LOGICAL
C Indicates whether the user wishes to accumulate in a
C matrix Z the orthogonal column transformations, as
C follows:
C = .FALSE.: Do not form Z;
C = .TRUE.: The given matrix Z is updated by the orthogonal
C column transformations used in the reduction.
C
C Input/Output Parameters
C
C M (input) INTEGER
C Number of rows in A and E. M >= 0.
C
C N (input) INTEGER
C Number of columns in A and E. N >= 0.
C
C NBLCKS (input) INTEGER
C Number of submatrices having full row rank (possibly zero)
C in A(eps,inf).
C
C INUK (input) INTEGER array, dimension (NBLCKS)
C The row dimensions nu(k) (k=1, 2, ..., NBLCKS) of the
C submatrices having full row rank in the pencil
C s*E(eps,inf)-A(eps,inf).
C
C IMUK (input) INTEGER array, dimension (NBLCKS)
C The column dimensions mu(k) (k=1, 2, ..., NBLCKS) of the
C submatrices having full column rank in the pencil.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, this array contains the matrix A to be reduced.
C On exit, it contains the transformed matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,M).
C
C E (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C On entry, this array contains the matrix E to be reduced.
C On exit, it contains the transformed matrix E.
C
C LDE INTEGER
C The leading dimension of array E. LDE >= MAX(1,M).
C
C Q (input/output) DOUBLE PRECISION array, dimension (LDQ,*)
C On entry, if UPDATQ = .TRUE., then the leading M-by-M
C part of this array must contain a given matrix Q (e.g.
C from a previous call to another SLICOT routine), and on
C exit, the leading M-by-M part of this array contains the
C product of the input matrix Q and the row transformation
C matrix that has transformed the rows of the matrices A
C and E.
C If UPDATQ = .FALSE., the array Q is not referenced and
C can be supplied as a dummy array (i.e. set parameter
C LDQ = 1 and declare this array to be Q(1,1) in the calling
C program).
C
C LDQ INTEGER
C The leading dimension of array Q. If UPDATQ = .TRUE.,
C LDQ >= MAX(1,M); if UPDATQ = .FALSE., LDQ >= 1.
C
C Z (input/output) DOUBLE PRECISION array, dimension (LDZ,*)
C On entry, if UPDATZ = .TRUE., then the leading N-by-N
C part of this array must contain a given matrix Z (e.g.
C from a previous call to another SLICOT routine), and on
C exit, the leading N-by-N part of this array contains the
C product of the input matrix Z and the column
C transformation matrix that has transformed the columns of
C the matrices A and E.
C If UPDATZ = .FALSE., the array Z is not referenced and
C can be supplied as a dummy array (i.e. set parameter
C LDZ = 1 and declare this array to be Z(1,1) in the calling
C program).
C
C LDZ INTEGER
C The leading dimension of array Z. If UPDATZ = .TRUE.,
C LDZ >= MAX(1,N); if UPDATZ = .FALSE., LDZ >= 1.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: if incorrect dimensions of a full column rank
C submatrix;
C = 2: if incorrect dimensions of a full row rank
C submatrix.
C
C REFERENCES
C
C [1] Beelen, Th.
C New Algorithms for Computing the Kronecker structure of a
C Pencil with Applications to Systems and Control Theory.
C Ph.D.Thesis, Eindhoven University of Technology,
C The Netherlands, 1987.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Apr. 1997.
C Supersedes Release 2.0 routine MB04FY by Th.G.J. Beelen,
C Philips Glass Eindhoven, Holland.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Generalized eigenvalue problem, orthogonal transformation,
C staircase form.
C
C ******************************************************************
C
C .. Scalar Arguments ..
LOGICAL UPDATQ, UPDATZ
INTEGER INFO, LDA, LDE, LDQ, LDZ, M, N, NBLCKS
C .. Array Arguments ..
INTEGER IMUK(*), INUK(*)
DOUBLE PRECISION A(LDA,*), E(LDE,*), Q(LDQ,*), Z(LDZ,*)
C .. Local Scalars ..
INTEGER IFICA, IFICE, IFIRE, ISMUK, ISNUK1, K, MUK,
$ MUKP1, NUK
C .. External Subroutines ..
EXTERNAL MB04TV, MB04TW
C .. Executable Statements ..
C
INFO = 0
IF ( M.LE.0 .OR. N.LE.0 )
$ RETURN
C
C ISMUK = sum(i=1,...,k) MU(i),
C ISNUK1 = sum(i=1,...,k-1) NU(i).
C
ISMUK = 0
ISNUK1 = 0
C
DO 20 K = 1, NBLCKS
ISMUK = ISMUK + IMUK(K)
ISNUK1 = ISNUK1 + INUK(K)
20 CONTINUE
C
C Note: ISNUK1 has not yet the correct value.
C
MUKP1 = 0
C
DO 40 K = NBLCKS, 1, -1
MUK = IMUK(K)
NUK = INUK(K)
ISNUK1 = ISNUK1 - NUK
C
C Determine left upper absolute co-ordinates of E(k) in E-matrix
C and of A(k) in A-matrix.
C
IFIRE = 1 + ISNUK1
IFICE = 1 + ISMUK
IFICA = IFICE - MUK
C
C Reduce E(k) to upper triangular form using Givens
C transformations on rows only. Apply the same transformations
C to the rows of A(k).
C
IF ( MUKP1.GT.NUK ) THEN
INFO = 1
RETURN
END IF
C
CALL MB04TW( UPDATQ, M, N, NUK, MUKP1, IFIRE, IFICE, IFICA, A,
$ LDA, E, LDE, Q, LDQ )
C
C Reduce A(k) to upper triangular form using Givens
C transformations on columns only. Apply the same transformations
C to the columns in the E-matrix.
C
IF ( NUK.GT.MUK ) THEN
INFO = 2
RETURN
END IF
C
CALL MB04TV( UPDATZ, N, NUK, MUK, IFIRE, IFICA, A, LDA, E, LDE,
$ Z, LDZ )
C
ISMUK = ISMUK - MUK
MUKP1 = MUK
40 CONTINUE
C
RETURN
C *** Last line of MB04TY ***
END
|