File: MB04UD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (375 lines) | stat: -rw-r--r-- 13,901 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
      SUBROUTINE MB04UD( JOBQ, JOBZ, M, N, A, LDA, E, LDE, Q, LDQ,
     $                   Z, LDZ, RANKE, ISTAIR, TOL, DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute orthogonal transformations Q and Z such that the
C     transformed pencil Q'(sE-A)Z has the E matrix in column echelon
C     form, where E and A are M-by-N matrices.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBQ    CHARACTER*1
C             Indicates whether the user wishes to accumulate in a
C             matrix Q the unitary row permutations, as follows:
C             = 'N':  Do not form Q;
C             = 'I':  Q is initialized to the unit matrix and the
C                     unitary row permutation matrix Q is returned;
C             = 'U':  The given matrix Q is updated by the unitary
C                     row permutations used in the reduction.
C
C     JOBZ    CHARACTER*1
C             Indicates whether the user wishes to accumulate in a
C             matrix Z the unitary column transformations, as follows:
C             = 'N':  Do not form Z;
C             = 'I':  Z is initialized to the unit matrix and the
C                     unitary transformation matrix Z is returned;
C             = 'U':  The given matrix Z is updated by the unitary
C                     transformations used in the reduction.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows in the matrices A, E and the order of
C             the matrix Q.  M >= 0.
C
C     N       (input) INTEGER
C             The number of columns in the matrices A, E and the order
C             of the matrix Z.  N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading M-by-N part of this array must
C             contain the A matrix of the pencil sE-A.
C             On exit, the leading M-by-N part of this array contains
C             the unitary transformed matrix Q' * A * Z.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,M).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
C             On entry, the leading M-by-N part of this array must
C             contain the E matrix of the pencil sE-A, to be reduced to
C             column echelon form.
C             On exit, the leading M-by-N part of this array contains
C             the unitary transformed matrix Q' * E * Z, which is in
C             column echelon form.
C
C     LDE     INTEGER
C             The leading dimension of array E.  LDE >= MAX(1,M).
C
C     Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,*)
C             On entry, if JOBQ = 'U', then the leading M-by-M part of
C             this array must contain a given matrix Q (e.g. from a
C             previous call to another SLICOT routine), and on exit, the
C             leading M-by-M part of this array contains the product of
C             the input matrix Q and the row permutation matrix used to
C             transform the rows of matrix E.
C             On exit, if JOBQ = 'I', then the leading M-by-M part of
C             this array contains the matrix of accumulated unitary
C             row transformations performed.
C             If JOBQ = 'N', the array Q is not referenced and can be
C             supplied as a dummy array (i.e. set parameter LDQ = 1 and
C             declare this array to be Q(1,1) in the calling program).
C
C     LDQ     INTEGER
C             The leading dimension of array Q. If JOBQ = 'U' or
C             JOBQ = 'I', LDQ >= MAX(1,M); if JOBQ = 'N', LDQ >= 1.
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,*)
C             On entry, if JOBZ = 'U', then the leading N-by-N part of
C             this array must contain a given matrix Z (e.g. from a
C             previous call to another SLICOT routine), and on exit, the
C             leading N-by-N part of this array contains the product of
C             the input matrix Z and the column transformation matrix
C             used to transform the columns of matrix E.
C             On exit, if JOBZ = 'I', then the leading N-by-N part of
C             this array contains the matrix of accumulated unitary
C             column transformations performed.
C             If JOBZ = 'N', the array Z is not referenced and can be
C             supplied as a dummy array (i.e. set parameter LDZ = 1 and
C             declare this array to be Z(1,1) in the calling program).
C
C     LDZ     INTEGER
C             The leading dimension of array Z. If JOBZ = 'U' or
C             JOBZ = 'I', LDZ >= MAX(1,N); if JOBZ = 'N', LDZ >= 1.
C
C     RANKE   (output) INTEGER
C             The computed rank of the unitary transformed matrix E.
C
C     ISTAIR  (output) INTEGER array, dimension (M)
C             This array contains information on the column echelon form
C             of the unitary transformed matrix E. Specifically,
C             ISTAIR(i) = +j if the first non-zero element E(i,j)
C             is a corner point and -j otherwise, for i = 1,2,...,M.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             A tolerance below which matrix elements are considered
C             to be zero. If the user sets TOL to be less than (or
C             equal to) zero then the tolerance is taken as
C             EPS * MAX(ABS(E(I,J))), where EPS is the machine
C             precision (see LAPACK Library routine DLAMCH),
C             I = 1,2,...,M and J = 1,2,...,N.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension MAX(M,N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Given an M-by-N matrix pencil sE-A with E not necessarily regular,
C     the routine computes a unitary transformed pencil Q'(sE-A)Z such
C     that the matrix Q' * E * Z is in column echelon form (trapezoidal
C     form).  Further details can be found in [1].
C
C     [An M-by-N matrix E with rank(E) = r is said to be in column
C     echelon form if the following conditions are satisfied:
C     (a) the first (N - r) columns contain only zero elements; and
C     (b) if E(i(k),k) is the last nonzero element in column k for
C         k = N-r+1,...,N, i.e. E(i(k),k) <> 0 and E(j,k) = 0 for
C         j > i(k), then 1 <= i(N-r+1) < i(N-r+2) < ... < i(N) <= M.]
C
C     REFERENCES
C
C     [1] Beelen, Th. and Van Dooren, P.
C         An improved algorithm for the computation of Kronecker's
C         canonical form of a singular pencil.
C         Linear Algebra and Applications, 105, pp. 9-65, 1988.
C
C     NUMERICAL ASPECTS
C
C     It is shown in [1] that the algorithm is numerically backward
C     stable. The operations count is proportional to (MAX(M,N))**3.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Jan. 1998.
C     Based on Release 3.0 routine MB04SD modified by A. Varga,
C     German Aerospace Research Establishment, Oberpfaffenhofen,
C     Germany, Dec. 1997, to transform also the matrix A.
C
C     REVISIONS
C
C     A. Varga, DLR Oberpfaffenhofen, June 2005.
C
C     KEYWORDS
C
C     Echelon form, orthogonal transformation, staircase form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         JOBQ, JOBZ
      INTEGER           INFO, LDA, LDE, LDQ, LDZ, M, N, RANKE
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           ISTAIR(*)
      DOUBLE PRECISION  A(LDA,*), DWORK(*), E(LDE,*), Q(LDQ,*), Z(LDZ,*)
C     .. Local Scalars ..
      LOGICAL           LJOBQI, LJOBZI, LZERO, UPDATQ, UPDATZ
      INTEGER           I, K, KM1, L, LK, MNK, NR1
      DOUBLE PRECISION  EMX, EMXNRM, TAU, TOLER
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           IDAMAX
      DOUBLE PRECISION  DLAMCH, DLANGE
      EXTERNAL          DLAMCH, DLANGE, IDAMAX, LSAME
C     .. External Subroutines ..
      EXTERNAL          DLARF, DLARFG, DLASET, DSWAP, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, MAX, MIN
C     .. Executable Statements ..
C
      INFO = 0
      LJOBQI = LSAME( JOBQ, 'I' )
      UPDATQ = LJOBQI.OR.LSAME( JOBQ, 'U' )
      LJOBZI = LSAME( JOBZ, 'I' )
      UPDATZ = LJOBZI.OR.LSAME( JOBZ, 'U' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.UPDATQ .AND. .NOT.LSAME( JOBQ, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.UPDATZ .AND. .NOT.LSAME( JOBZ, 'N' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -6
      ELSE IF( LDE.LT.MAX( 1, M ) ) THEN
         INFO = -8
      ELSE IF( .NOT.UPDATQ .AND. LDQ.LT.1 .OR.
     $              UPDATQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
         INFO = -10
      ELSE IF( .NOT.UPDATZ .AND. LDZ.LT.1 .OR.
     $              UPDATZ .AND. LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -12
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB04UD', -INFO )
         RETURN
      END IF
C
C     Initialize Q and Z to the identity matrices, if needed.
C
      IF ( LJOBQI )
     $   CALL DLASET( 'Full', M, M, ZERO, ONE, Q, LDQ )
      IF ( LJOBZI )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
C
C     Quick return if possible.
C
      RANKE = MIN( M, N )
C
      IF ( RANKE.EQ.0 )
     $   RETURN
C
      TOLER = TOL
      IF ( TOLER.LE.ZERO )
     $   TOLER = DLAMCH( 'Epsilon' )*DLANGE( 'M', M, N, E, LDE, DWORK )
C
      K = N
      LZERO = .FALSE.
C
C     WHILE ( ( K > 0 ) AND ( NOT a zero submatrix encountered ) ) DO
   20 IF ( ( K.GT.0 ) .AND. ( .NOT. LZERO ) ) THEN
C
C         Intermediate form of E
C
C                     <--k--><--n-k->
C                l=1 |x....x|       |
C                    |      |       |
C                    |  Ek  |   X   |
C                    |      |       |
C            l=m-n+k |x....x|       |
C                    ----------------
C                    |      |x ... x|  }
C                    |  O   |  x x x|  }
C                    |      |    x x|  } n-k
C                    |      |      x|  }
C
C        where submatrix Ek = E[1:m-n+k;1:k].
C
C        Determine row LK in submatrix Ek with largest max-norm
C        (starting with row m-n+k).
C
         MNK = M - N + K
         EMXNRM = ZERO
         LK = MNK
C
         DO 40 L = MNK, 1, -1
            EMX = ABS( E(L,IDAMAX( K, E(L,1), LDE )) )
            IF ( EMX.GT.EMXNRM ) THEN
               EMXNRM = EMX
               LK = L
            END IF
   40    CONTINUE
C
         IF ( EMXNRM.LE.TOLER ) THEN
C
C           Set submatrix Ek to zero.
C
            CALL DLASET( 'Full', MNK, K, ZERO, ZERO, E, LDE )
            LZERO = .TRUE.
            RANKE = N - K
         ELSE
C
C           Submatrix Ek is not considered to be identically zero.
C           Check whether rows have to be interchanged.
C
            IF ( LK.NE.MNK ) THEN
C
C              Interchange rows lk and m-n+k in whole A- and E-matrix
C              and update the row transformation matrix Q, if needed.
C              (For Q, the number of elements involved is m.)
C
               CALL DSWAP( N, E(LK,1), LDE, E(MNK,1), LDE )
               CALL DSWAP( N, A(LK,1), LDA, A(MNK,1), LDA )
               IF( UPDATQ ) CALL DSWAP( M, Q(1,LK), 1, Q(1,MNK), 1 )
            END IF
C
            KM1 = K - 1
C
C           Determine a Householder transformation to annihilate
C           E(m-n+k,1:k-1) using E(m-n+k,k) as pivot.
C           Apply the transformation to the columns of A and Ek
C           (number of elements involved is m for A and m-n+k for Ek).
C           Update the column transformation matrix Z, if needed
C           (number of elements involved is n).
C
            CALL DLARFG( K, E(MNK,K), E(MNK,1), LDE, TAU )
            EMX = E(MNK,K)
            E(MNK,K) = ONE
            CALL DLARF( 'Right', MNK-1, K, E(MNK,1), LDE, TAU, E, LDE,
     $                   DWORK )
            CALL DLARF( 'Right', M, K, E(MNK,1), LDE, TAU, A, LDA,
     $                   DWORK )
            IF( UPDATZ ) CALL DLARF( 'Right', N, K, E(MNK,1), LDE, TAU,
     $                               Z, LDZ, DWORK )
            E(MNK,K) = EMX
            CALL DLASET( 'Full', 1, KM1, ZERO, ZERO, E(MNK,1), LDE )
C
            K = KM1
         END IF
         GO TO 20
      END IF
C     END WHILE 20
C
C     Initialise administration staircase form, i.e.
C     ISTAIR(i) =  j  if E(i,j) is a nonzero corner point
C               = -j  if E(i,j) is on the boundary but is no corner
C                     point.
C     Thus,
C     ISTAIR(m-k) =   n-k           for k=0,...,rank(E)-1
C                 = -(n-rank(E)+1)  for k=rank(E),...,m-1.
C
      DO 60 I = 0, RANKE - 1
         ISTAIR(M-I) = N - I
   60 CONTINUE
C
      NR1 = -(N - RANKE + 1)
C
      DO 80 I = 1, M - RANKE
         ISTAIR(I) = NR1
   80 CONTINUE
C
      RETURN
C *** Last line of MB04UD ***
      END