1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
SUBROUTINE MB04WP( N, ILO, U1, LDU1, U2, LDU2, CS, TAU, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To generate an orthogonal symplectic matrix U, which is defined as
C a product of symplectic reflectors and Givens rotators
C
C U = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )
C diag( H(2),H(2) ) G(2) diag( F(2),F(2) )
C ....
C diag( H(n-1),H(n-1) ) G(n-1) diag( F(n-1),F(n-1) ).
C
C as returned by MB04PU. The matrix U is returned in terms of its
C first N rows
C
C [ U1 U2 ]
C U = [ ].
C [ -U2 U1 ]
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices U1 and U2. N >= 0.
C
C ILO (input) INTEGER
C ILO must have the same value as in the previous call of
C MB04PU. U is equal to the unit matrix except in the
C submatrix
C U([ilo+1:n n+ilo+1:2*n], [ilo+1:n n+ilo+1:2*n]).
C 1 <= ILO <= N, if N > 0; ILO = 1, if N = 0.
C
C U1 (input/output) DOUBLE PRECISION array, dimension (LDU1,N)
C On entry, the leading N-by-N part of this array must
C contain in its i-th column the vector which defines the
C elementary reflector F(i).
C On exit, the leading N-by-N part of this array contains
C the matrix U1.
C
C LDU1 INTEGER
C The leading dimension of the array U1. LDU1 >= MAX(1,N).
C
C U2 (input/output) DOUBLE PRECISION array, dimension (LDU2,N)
C On entry, the leading N-by-N part of this array must
C contain in its i-th column the vector which defines the
C elementary reflector H(i) and, on the subdiagonal, the
C scalar factor of H(i).
C On exit, the leading N-by-N part of this array contains
C the matrix U2.
C
C LDU2 INTEGER
C The leading dimension of the array U2. LDU2 >= MAX(1,N).
C
C CS (input) DOUBLE PRECISION array, dimension (2N-2)
C On entry, the first 2N-2 elements of this array must
C contain the cosines and sines of the symplectic Givens
C rotators G(i).
C
C TAU (input) DOUBLE PRECISION array, dimension (N-1)
C On entry, the first N-1 elements of this array must
C contain the scalar factors of the elementary reflectors
C F(i).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal
C value of LDWORK.
C On exit, if INFO = -10, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= MAX(1,2*(N-ILO)).
C For optimum performance LDWORK should be larger. (See
C SLICOT Library routine MB04WD).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C NUMERICAL ASPECTS
C
C The algorithm requires O(N**3) floating point operations and is
C strongly backward stable.
C
C REFERENCES
C
C [1] C. F. VAN LOAN:
C A symplectic method for approximating all the eigenvalues of
C a Hamiltonian matrix.
C Linear Algebra and its Applications, 61, pp. 233-251, 1984.
C
C [2] D. KRESSNER:
C Block algorithms for orthogonal symplectic factorizations.
C BIT, 43 (4), pp. 775-790, 2003.
C
C CONTRIBUTORS
C
C D. Kressner (Technical Univ. Berlin, Germany) and
C P. Benner (Technical Univ. Chemnitz, Germany), December 2003.
C
C REVISIONS
C
C V. Sima, Nov. 2008 (SLICOT version of the HAPACK routine DOSGPV).
C
C KEYWORDS
C
C Elementary matrix operations, orthogonal symplectic matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C .. Scalar Arguments ..
INTEGER ILO, INFO, LDU1, LDU2, LDWORK, N
C .. Array Arguments ..
DOUBLE PRECISION CS(*), DWORK(*), U1(LDU1,*), U2(LDU2,*), TAU(*)
C .. Local Scalars ..
INTEGER I, IERR, J, NH
C .. External Subroutines ..
EXTERNAL DLASET, MB04WD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
C
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
INFO = 0
IF ( N.LT.0 ) THEN
INFO = -1
ELSE IF ( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
INFO = -2
ELSE IF ( LDU1.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF ( LDU2.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF ( LDWORK.LT.MAX( 1, 2*( N - ILO ) ) ) THEN
DWORK(1) = DBLE( MAX( 1, 2*( N - ILO ) ) )
INFO = -10
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB04WP', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C Shift the vectors which define the elementary reflectors one
C column to the right, and set the first ilo rows and columns to
C those of the unit matrix.
C
DO 30 J = N, ILO + 1, -1
DO 10 I = 1, J-1
U1(I,J) = ZERO
10 CONTINUE
DO 20 I = J+1, N
U1(I,J) = U1(I,J-1)
20 CONTINUE
30 CONTINUE
CALL DLASET( 'All', N, ILO, ZERO, ONE, U1, LDU1 )
DO 60 J = N, ILO + 1, -1
DO 40 I = 1, J-1
U2(I,J) = ZERO
40 CONTINUE
DO 50 I = J, N
U2(I,J) = U2(I,J-1)
50 CONTINUE
60 CONTINUE
CALL DLASET( 'All', N, ILO, ZERO, ZERO, U2, LDU2 )
NH = N - ILO
IF ( NH.GT.0 ) THEN
CALL MB04WD( 'No Transpose', 'No Transpose', NH, NH, NH,
$ U1(ILO+1,ILO+1), LDU1, U2(ILO+1,ILO+1), LDU2,
$ CS(ILO), TAU(ILO), DWORK, LDWORK, IERR )
END IF
RETURN
C *** Last line of MB04WP ***
END
|