File: MB04WP.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (211 lines) | stat: -rw-r--r-- 7,076 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
      SUBROUTINE MB04WP( N, ILO, U1, LDU1, U2, LDU2, CS, TAU, DWORK,
     $                   LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To generate an orthogonal symplectic matrix U, which is defined as
C     a product of symplectic reflectors and Givens rotators
C
C     U = diag( H(1),H(1) )      G(1)  diag( F(1),F(1) )
C         diag( H(2),H(2) )      G(2)  diag( F(2),F(2) )
C                                ....
C         diag( H(n-1),H(n-1) ) G(n-1) diag( F(n-1),F(n-1) ).
C
C     as returned by MB04PU. The matrix U is returned in terms of its
C     first N rows
C
C                      [  U1   U2 ]
C                  U = [          ].
C                      [ -U2   U1 ]
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices U1 and U2.  N >= 0.
C
C     ILO     (input) INTEGER
C             ILO must have the same value as in the previous call of
C             MB04PU. U is equal to the unit matrix except in the
C             submatrix
C             U([ilo+1:n n+ilo+1:2*n], [ilo+1:n n+ilo+1:2*n]).
C             1 <= ILO <= N, if N > 0; ILO = 1, if N = 0.
C
C     U1      (input/output) DOUBLE PRECISION array, dimension (LDU1,N)
C             On entry, the leading N-by-N part of this array must
C             contain in its i-th column the vector which defines the
C             elementary reflector F(i).
C             On exit, the leading N-by-N part of this array contains
C             the matrix U1.
C
C     LDU1    INTEGER
C             The leading dimension of the array U1.  LDU1 >= MAX(1,N).
C
C     U2      (input/output) DOUBLE PRECISION array, dimension (LDU2,N)
C             On entry, the leading N-by-N part of this array must
C             contain in its i-th column the vector which defines the
C             elementary reflector H(i) and, on the subdiagonal, the
C             scalar factor of H(i).
C             On exit, the leading N-by-N part of this array contains
C             the matrix U2.
C
C     LDU2    INTEGER
C             The leading dimension of the array U2.  LDU2 >= MAX(1,N).
C
C     CS      (input) DOUBLE PRECISION array, dimension (2N-2)
C             On entry, the first 2N-2 elements of this array must
C             contain the cosines and sines of the symplectic Givens
C             rotators G(i).
C
C     TAU     (input) DOUBLE PRECISION array, dimension (N-1)
C             On entry, the first N-1 elements of this array must
C             contain the scalar factors of the elementary reflectors
C             F(i).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -10,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK. LDWORK >= MAX(1,2*(N-ILO)).
C             For optimum performance LDWORK should be larger. (See
C             SLICOT Library routine MB04WD).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires O(N**3) floating point operations and is
C     strongly backward stable.
C
C     REFERENCES
C
C     [1] C. F. VAN LOAN:
C         A symplectic method for approximating all the eigenvalues of
C         a Hamiltonian matrix.
C         Linear Algebra and its Applications, 61, pp. 233-251, 1984.
C
C     [2] D. KRESSNER:
C         Block algorithms for orthogonal symplectic factorizations.
C         BIT, 43 (4), pp. 775-790, 2003.
C
C     CONTRIBUTORS
C
C     D. Kressner (Technical Univ. Berlin, Germany) and
C     P. Benner (Technical Univ. Chemnitz, Germany), December 2003.
C
C     REVISIONS
C
C     V. Sima, Nov. 2008 (SLICOT version of the HAPACK routine DOSGPV).
C
C     KEYWORDS
C
C     Elementary matrix operations, orthogonal symplectic matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     .. Scalar Arguments ..
      INTEGER           ILO, INFO, LDU1, LDU2, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), U1(LDU1,*), U2(LDU2,*), TAU(*)
C     .. Local Scalars ..
      INTEGER           I, IERR, J, NH
C     .. External Subroutines ..
      EXTERNAL          DLASET, MB04WD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX
C
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      INFO = 0
      IF ( N.LT.0 ) THEN
         INFO = -1
      ELSE IF ( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -2
      ELSE IF ( LDU1.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF ( LDU2.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF ( LDWORK.LT.MAX( 1, 2*( N - ILO ) ) ) THEN
         DWORK(1) = DBLE( MAX( 1, 2*( N - ILO ) ) )
         INFO = -10
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB04WP', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Shift the vectors which define the elementary reflectors one
C     column to the right, and set the first ilo rows and columns to
C     those of the unit matrix.
C
      DO 30 J = N, ILO + 1, -1
         DO 10 I = 1, J-1
            U1(I,J) = ZERO
   10    CONTINUE
         DO 20 I = J+1, N
            U1(I,J) = U1(I,J-1)
   20    CONTINUE
   30 CONTINUE
      CALL DLASET( 'All', N, ILO, ZERO, ONE, U1, LDU1 )
      DO 60 J = N, ILO + 1, -1
         DO 40 I = 1, J-1
            U2(I,J) = ZERO
   40    CONTINUE
         DO 50 I = J, N
            U2(I,J) = U2(I,J-1)
   50    CONTINUE
   60 CONTINUE
      CALL DLASET( 'All', N, ILO, ZERO, ZERO, U2, LDU2 )
      NH = N - ILO
      IF ( NH.GT.0 ) THEN
         CALL MB04WD( 'No Transpose', 'No Transpose', NH, NH, NH,
     $                U1(ILO+1,ILO+1), LDU1, U2(ILO+1,ILO+1), LDU2,
     $                CS(ILO), TAU(ILO), DWORK, LDWORK, IERR )
      END IF
      RETURN
C *** Last line of MB04WP ***
      END