File: MB04WR.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (340 lines) | stat: -rw-r--r-- 12,669 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
      SUBROUTINE MB04WR( JOB, TRANS, N, ILO, Q1, LDQ1, Q2, LDQ2, CS,
     $                   TAU, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To generate orthogonal symplectic matrices U or V, defined as
C     products of symplectic reflectors and Givens rotators
C
C     U = diag( HU(1),HU(1) )  GU(1)  diag( FU(1),FU(1) )
C         diag( HU(2),HU(2) )  GU(2)  diag( FU(2),FU(2) )
C                              ....
C         diag( HU(n),HU(n) )  GU(n)  diag( FU(n),FU(n) ),
C
C     V = diag( HV(1),HV(1) )       GV(1)   diag( FV(1),FV(1) )
C         diag( HV(2),HV(2) )       GV(2)   diag( FV(2),FV(2) )
C                                   ....
C         diag( HV(n-1),HV(n-1) )  GV(n-1)  diag( FV(n-1),FV(n-1) ),
C
C     as returned by the SLICOT Library routines MB04TS or MB04TB. The
C     matrices U and V are returned in terms of their first N/2 rows:
C
C                 [  U1   U2 ]           [  V1   V2 ]
C             U = [          ],      V = [          ].
C                 [ -U2   U1 ]           [ -V2   V1 ]
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     JOB     CHARACTER*1
C             Specifies whether the matrix U or the matrix V is
C             required:
C             = 'U':  generate U;
C             = 'V':  generate V.
C
C     TRANS   CHARACTER*1
C             If  JOB = 'U'  then TRANS must have the same value as
C             the argument TRANA in the previous call of MB04TS or
C             MB04TB.
C             If  JOB = 'V'  then TRANS must have the same value as
C             the argument TRANB in the previous call of MB04TS or
C             MB04TB.
C
C     N       (input) INTEGER
C             The order of the matrices Q1 and Q2. N >= 0.
C
C     ILO     (input) INTEGER
C             ILO must have the same value as in the previous call of
C             MB04TS or MB04TB. U and V are equal to the unit matrix
C             except in the submatrices
C             U([ilo:n n+ilo:2*n], [ilo:n n+ilo:2*n]) and
C             V([ilo+1:n n+ilo+1:2*n], [ilo+1:n n+ilo+1:2*n]),
C             respectively.
C             1 <= ILO <= N, if N > 0; ILO = 1, if N = 0.
C
C     Q1      (input/output) DOUBLE PRECISION array, dimension (LDQ1,N)
C             On entry, if  JOB = 'U'  and  TRANS = 'N'  then the
C             leading N-by-N part of this array must contain in its i-th
C             column the vector which defines the elementary reflector
C             FU(i).
C             If  JOB = 'U'  and  TRANS = 'T'  or  TRANS = 'C' then the
C             leading N-by-N part of this array must contain in its i-th
C             row the vector which defines the elementary reflector
C             FU(i).
C             If  JOB = 'V'  and  TRANS = 'N'  then the leading N-by-N
C             part of this array must contain in its i-th row the vector
C             which defines the elementary reflector FV(i).
C             If  JOB = 'V'  and  TRANS = 'T'  or  TRANS = 'C' then the
C             leading N-by-N part of this array must contain in its i-th
C             column the vector which defines the elementary reflector
C             FV(i).
C             On exit, if  JOB = 'U'  and  TRANS = 'N'  then the leading
C             N-by-N part of this array contains the matrix U1.
C             If  JOB = 'U'  and  TRANS = 'T'  or  TRANS = 'C' then the
C             leading N-by-N part of this array contains the matrix
C             U1**T.
C             If  JOB = 'V'  and  TRANS = 'N'  then the leading N-by-N
C             part of this array contains the matrix V1**T.
C             If  JOB = 'V'  and  TRANS = 'T'  or  TRANS = 'C' then the
C             leading N-by-N part of this array contains the matrix V1.
C
C     LDQ1    INTEGER
C             The leading dimension of the array Q1.  LDQ1 >= MAX(1,N).
C
C     Q2      (input/output) DOUBLE PRECISION array, dimension (LDQ2,N)
C             On entry, if  JOB = 'U'  then the leading N-by-N part of
C             this array must contain in its i-th column the vector
C             which defines the elementary reflector HU(i).
C             If  JOB = 'V'  then the leading N-by-N part of this array
C             must contain in its i-th row the vector which defines the
C             elementary reflector HV(i).
C             On exit, if  JOB = 'U'  then the leading N-by-N part of
C             this array contains the matrix U2.
C             If  JOB = 'V'  then the leading N-by-N part of this array
C             contains the matrix V2**T.
C
C     LDQ2    INTEGER
C             The leading dimension of the array Q2.  LDQ2 >= MAX(1,N).
C
C     CS      (input) DOUBLE PRECISION array, dimension (2N)
C             On entry, if  JOB = 'U'  then the first 2N elements of
C             this array must contain the cosines and sines of the
C             symplectic Givens rotators GU(i).
C             If  JOB = 'V'  then the first 2N-2 elements of this array
C             must contain the cosines and sines of the symplectic
C             Givens rotators GV(i).
C
C     TAU     (input) DOUBLE PRECISION array, dimension (N)
C             On entry, if  JOB = 'U'  then the first N elements of
C             this array must contain the scalar factors of the
C             elementary reflectors FU(i).
C             If  JOB = 'V'  then the first N-1 elements of this array
C             must contain the scalar factors of the elementary
C             reflectors FV(i).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -12,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,2*(N-ILO+1)).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     REFERENCES
C
C     [1] Benner, P., Mehrmann, V., and Xu, H.
C         A numerically stable, structure preserving method for
C         computing the eigenvalues of real Hamiltonian or symplectic
C         pencils. Numer. Math., Vol 78 (3), pp. 329-358, 1998.
C
C     [2] Kressner, D.
C         Block algorithms for orthogonal symplectic factorizations.
C         BIT, 43 (4), pp. 775-790, 2003.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, June 2008 (SLICOT version of the HAPACK routine DOSGSU).
C
C     KEYWORDS
C
C     Elementary matrix operations, Hamiltonian matrix, orthogonal
C     symplectic matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     .. Scalar Arguments ..
      CHARACTER         JOB, TRANS
      INTEGER           ILO, INFO, LDQ1, LDQ2, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), Q1(LDQ1,*), Q2(LDQ2,*), TAU(*)
C     .. Local Scalars ..
      LOGICAL           COMPU, LTRAN
      INTEGER           I, IERR, J, NH
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DLASET, MB04WD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX
C
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      INFO  = 0
      LTRAN = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
      COMPU = LSAME( JOB, 'U' )
      IF ( .NOT.COMPU .AND. .NOT.LSAME( JOB, 'V' ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.LTRAN .AND. .NOT.LSAME( TRANS, 'N' ) ) THEN
         INFO = -2
      ELSE IF ( N.LT.0 ) THEN
         INFO = -3
      ELSE IF ( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF ( LDQ1.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF ( LDQ2.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF ( LDWORK.LT.MAX( 1, 2*( N-ILO+1 ) ) ) THEN
         DWORK(1) = DBLE( MAX( 1, 2*( N-ILO+1 ) ) )
         INFO = -12
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB04WR', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
      IF ( COMPU ) THEN
         CALL DLASET( 'All', N, ILO-1, ZERO, ONE, Q1, LDQ1 )
         CALL DLASET( 'All', ILO-1, N-ILO+1, ZERO, ZERO, Q1(1,ILO),
     $                LDQ1 )
         CALL DLASET( 'All', N, ILO-1, ZERO, ZERO, Q2, LDQ2 )
         CALL DLASET( 'All', ILO-1, N-ILO+1, ZERO, ZERO, Q2(1,ILO),
     $                LDQ2 )
         NH = N - ILO + 1
      END IF
      IF ( COMPU .AND. .NOT.LTRAN ) THEN
C
C        Generate U1 and U2.
C
         IF ( NH.GT.0 ) THEN
            CALL MB04WD( 'No Transpose', 'No Transpose', NH, NH, NH,
     $                   Q1(ILO,ILO), LDQ1, Q2(ILO,ILO), LDQ2, CS(ILO),
     $                   TAU(ILO), DWORK, LDWORK, IERR )
         END IF
      ELSE IF ( COMPU.AND.LTRAN ) THEN
C
C        Generate U1**T and U2.
C
         IF ( NH.GT.0 ) THEN
            CALL MB04WD( 'Transpose', 'No Transpose', NH, NH, NH,
     $                   Q1(ILO,ILO), LDQ1, Q2(ILO,ILO), LDQ2, CS(ILO),
     $                   TAU(ILO), DWORK, LDWORK, IERR )
         END IF
      ELSE IF ( .NOT.COMPU .AND. .NOT.LTRAN ) THEN
C
C        Generate V1**T and V2**T.
C
C        Shift the vectors which define the elementary reflectors one
C        column to the bottom, and set the first ilo rows and
C        columns to those of the unit matrix.
C
         DO 40  I = 1, N
            DO 10  J = N, MAX( I, ILO )+1, -1
               Q1(J,I) = ZERO
   10       CONTINUE
            DO 20  J = MAX( I, ILO ), ILO+1, -1
               Q1(J,I) = Q1(J-1,I)
   20       CONTINUE
            DO 30  J = ILO, 1, -1
               Q1(J,I) = ZERO
   30       CONTINUE
            IF ( I.LE.ILO )  Q1(I,I) = ONE
   40    CONTINUE
         DO 80  I = 1, N
            DO 50  J = N, MAX( I, ILO )+1, -1
               Q2(J,I) = ZERO
   50       CONTINUE
            DO 60  J = MAX( I, ILO ), ILO+1, -1
               Q2(J,I) = Q2(J-1,I)
   60       CONTINUE
            DO 70  J = ILO, 1, -1
               Q2(J,I) = ZERO
   70       CONTINUE
   80    CONTINUE
C
         NH = N - ILO
         IF ( NH.GT.0 ) THEN
            CALL MB04WD( 'Transpose', 'Transpose', NH, NH, NH,
     $                   Q1(ILO+1,ILO+1), LDQ1, Q2(ILO+1,ILO+1), LDQ2,
     $                   CS(ILO), TAU(ILO), DWORK, LDWORK, IERR )
         END IF
      ELSE IF ( .NOT.COMPU .AND. LTRAN ) THEN
C
C        Generate V1 and V2**T.
C
C        Shift the vectors which define the elementary reflectors one
C        column to the right/bottom, and set the first ilo rows and
C        columns to those of the unit matrix.
C
         DO 110  J = N, ILO + 1, -1
            DO 90  I = 1, J-1
               Q1(I,J) = ZERO
   90       CONTINUE
            DO 100  I = J+1, N
               Q1(I,J) = Q1(I,J-1)
  100       CONTINUE
  110    CONTINUE
         CALL DLASET( 'All', N, ILO, ZERO, ONE, Q1, LDQ1 )
         DO 150 I = 1, N
            DO 120  J = N, MAX( I, ILO )+1, -1
               Q2(J,I) = ZERO
  120       CONTINUE
            DO 130  J = MAX( I, ILO ), ILO+1, -1
               Q2(J,I) = Q2(J-1,I)
  130       CONTINUE
            DO 140  J = ILO, 1, -1
               Q2(J,I) = ZERO
  140       CONTINUE
  150    CONTINUE
         NH = N - ILO
C
         IF ( NH.GT.0 ) THEN
            CALL MB04WD( 'No Transpose', 'Transpose', NH, NH, NH,
     $                   Q1(ILO+1,ILO+1), LDQ1, Q2(ILO+1,ILO+1), LDQ2,
     $                   CS(ILO), TAU(ILO), DWORK, LDWORK, IERR )
         END IF
      END IF
      RETURN
C *** Last line of MB04WR ***
      END