1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
SUBROUTINE MB04WU( TRANQ1, TRANQ2, M, N, K, Q1, LDQ1, Q2, LDQ2,
$ CS, TAU, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To generate a matrix Q with orthogonal columns (spanning an
C isotropic subspace), which is defined as the first n columns
C of a product of symplectic reflectors and Givens rotators,
C
C Q = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )
C diag( H(2),H(2) ) G(2) diag( F(2),F(2) )
C ....
C diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).
C
C The matrix Q is returned in terms of its first 2*M rows
C
C [ op( Q1 ) op( Q2 ) ]
C Q = [ ].
C [ -op( Q2 ) op( Q1 ) ]
C
C ARGUMENTS
C
C Mode Parameters
C
C TRANQ1 CHARACTER*1
C Specifies the form of op( Q1 ) as follows:
C = 'N': op( Q1 ) = Q1;
C = 'T': op( Q1 ) = Q1';
C = 'C': op( Q1 ) = Q1'.
C
C TRANQ2 CHARACTER*1
C Specifies the form of op( Q2 ) as follows:
C = 'N': op( Q2 ) = Q2;
C = 'T': op( Q2 ) = Q2';
C = 'C': op( Q2 ) = Q2'.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the matrices Q1 and Q2. M >= 0.
C
C N (input) INTEGER
C The number of columns of the matrices Q1 and Q2.
C M >= N >= 0.
C
C K (input) INTEGER
C The number of symplectic Givens rotators whose product
C partly defines the matrix Q. N >= K >= 0.
C
C Q1 (input/output) DOUBLE PRECISION array, dimension
C (LDQ1,N) if TRANQ1 = 'N',
C (LDQ1,M) if TRANQ1 = 'T' or TRANQ1 = 'C'
C On entry with TRANQ1 = 'N', the leading M-by-K part of
C this array must contain in its i-th column the vector
C which defines the elementary reflector F(i).
C On entry with TRANQ1 = 'T' or TRANQ1 = 'C', the leading
C K-by-M part of this array must contain in its i-th row
C the vector which defines the elementary reflector F(i).
C On exit with TRANQ1 = 'N', the leading M-by-N part of this
C array contains the matrix Q1.
C On exit with TRANQ1 = 'T' or TRANQ1 = 'C', the leading
C N-by-M part of this array contains the matrix Q1'.
C
C LDQ1 INTEGER
C The leading dimension of the array Q1.
C LDQ1 >= MAX(1,M), if TRANQ1 = 'N';
C LDQ1 >= MAX(1,N), if TRANQ1 = 'T' or TRANQ1 = 'C'.
C
C Q2 (input/output) DOUBLE PRECISION array, dimension
C (LDQ2,N) if TRANQ2 = 'N',
C (LDQ2,M) if TRANQ2 = 'T' or TRANQ2 = 'C'
C On entry with TRANQ2 = 'N', the leading M-by-K part of
C this array must contain in its i-th column the vector
C which defines the elementary reflector H(i) and, on the
C diagonal, the scalar factor of H(i).
C On entry with TRANQ2 = 'T' or TRANQ2 = 'C', the leading
C K-by-M part of this array must contain in its i-th row the
C vector which defines the elementary reflector H(i) and, on
C the diagonal, the scalar factor of H(i).
C On exit with TRANQ2 = 'N', the leading M-by-N part of this
C array contains the matrix Q2.
C On exit with TRANQ2 = 'T' or TRANQ2 = 'C', the leading
C N-by-M part of this array contains the matrix Q2'.
C
C LDQ2 INTEGER
C The leading dimension of the array Q2.
C LDQ2 >= MAX(1,M), if TRANQ2 = 'N';
C LDQ2 >= MAX(1,N), if TRANQ2 = 'T' or TRANQ2 = 'C'.
C
C CS (input) DOUBLE PRECISION array, dimension (2*K)
C On entry, the first 2*K elements of this array must
C contain the cosines and sines of the symplectic Givens
C rotators G(i).
C
C TAU (input) DOUBLE PRECISION array, dimension (K)
C On entry, the first K elements of this array must
C contain the scalar factors of the elementary reflectors
C F(i).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal
C value of LDWORK.
C On exit, if INFO = -13, DWORK(1) returns the minimum
C value of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= MAX(1,M+N).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C REFERENCES
C
C [1] Bunse-Gerstner, A.
C Matrix factorizations for symplectic QR-like methods.
C Linear Algebra Appl., 83, pp. 49-77, 1986.
C
C CONTRIBUTORS
C
C D. Kressner, Technical Univ. Berlin, Germany, and
C P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C REVISIONS
C
C V. Sima, June 2008 (SLICOT version of the HAPACK routine DOSGSQ).
C
C KEYWORDS
C
C Elementary matrix operations, orthogonal symplectic matrix.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C .. Scalar Arguments ..
CHARACTER TRANQ1, TRANQ2
INTEGER INFO, K, LDQ1, LDQ2, LDWORK, M, N
C .. Array Arguments ..
DOUBLE PRECISION CS(*), DWORK(*), Q1(LDQ1,*), Q2(LDQ2,*), TAU(*)
C .. Local Scalars ..
LOGICAL LTRQ1, LTRQ2
INTEGER I, J
DOUBLE PRECISION NU
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DLARF, DLASET, DROT, DSCAL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
C
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
INFO = 0
LTRQ1 = LSAME( TRANQ1,'T' ) .OR. LSAME( TRANQ1,'C' )
LTRQ2 = LSAME( TRANQ2,'T' ) .OR. LSAME( TRANQ2,'C' )
C
C Check the scalar input parameters.
C
IF ( .NOT.( LTRQ1 .OR. LSAME( TRANQ1, 'N' ) ) ) THEN
INFO = -1
ELSE IF ( .NOT.( LTRQ2 .OR. LSAME( TRANQ2, 'N' ) ) ) THEN
INFO = -2
ELSE IF ( M.LT.0 ) THEN
INFO = -3
ELSE IF ( N.LT.0 .OR. N.GT.M ) THEN
INFO = -4
ELSE IF ( K.LT.0 .OR. K.GT.N ) THEN
INFO = -5
ELSE IF ( ( LTRQ1 .AND. LDQ1.LT.MAX( 1, N ) ) .OR.
$ ( .NOT.LTRQ1 .AND. LDQ1.LT.MAX( 1, M ) ) ) THEN
INFO = -7
ELSE IF ( ( LTRQ2 .AND. LDQ2.LT.MAX( 1, N ) ) .OR.
$ ( .NOT.LTRQ2 .AND. LDQ2.LT.MAX( 1, M ) ) ) THEN
INFO = -9
ELSE IF ( LDWORK.LT.MAX( 1,M + N ) ) THEN
DWORK(1) = DBLE( MAX( 1,M + N ) )
INFO = -13
END IF
C
C Return if there were illegal values.
C
IF ( INFO.NE.0 ) THEN
CALL XERBLA( 'MB04WU', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
DWORK(1) = ONE
RETURN
END IF
C
C Initialize columns K+1:N to columns of the unit matrix.
C
DO 20 J = K + 1, N
DO 10 I = 1, M
Q1(I,J) = ZERO
10 CONTINUE
Q1(J,J) = ONE
20 CONTINUE
CALL DLASET( 'All', M, N-K, ZERO, ZERO, Q2(1,K+1), LDQ2 )
C
IF ( LTRQ1.AND.LTRQ2 ) THEN
DO 50 I = K, 1, -1
C
C Apply F(I) to Q1(I+1:N,I:M) and Q2(I+1:N,I:M) from the
C right.
C
CALL DCOPY( M-I+1, Q2(I,I), LDQ2, DWORK, 1 )
IF ( I.LT.N ) THEN
Q1(I,I) = ONE
CALL DLARF( 'Right', N-I, M-I+1, Q1(I,I), LDQ1, TAU(I),
$ Q1(I+1,I), LDQ1, DWORK(M+1) )
CALL DLARF( 'Right', N-I, M-I+1, Q1(I,I), LDQ1, TAU(I),
$ Q2(I+1,I), LDQ2, DWORK(M+1) )
END IF
IF ( I.LT.M )
$ CALL DSCAL( M-I, -TAU(I), Q1(I,I+1), LDQ1 )
Q1(I,I) = ONE - TAU(I)
C
C Set Q1(I,1:I-1) and Q2(I,1:M) to zero.
C
DO 30 J = 1, I - 1
Q1(I,J) = ZERO
30 CONTINUE
DO 40 J = 1, M
Q2(I,J) = ZERO
40 CONTINUE
C
C Apply G(I) to Q1(I:N,I) and Q2(I:N,I) from the right.
C
CALL DROT( N-I+1, Q1(I,I), 1, Q2(I,I), 1, CS(2*I-1),
$ CS(2*I) )
C
C Apply H(I) to Q1(I:N,I:M) and Q2(I:N,I:M) from the right.
C
NU = DWORK(1)
DWORK(1) = ONE
CALL DLARF( 'Right', N-I+1, M-I+1, DWORK, 1, NU, Q1(I,I),
$ LDQ1, DWORK(M+1) )
CALL DLARF( 'Right', N-I+1, M-I+1, DWORK, 1, NU, Q2(I,I),
$ LDQ2, DWORK(M+1) )
50 CONTINUE
ELSE IF ( LTRQ1 ) THEN
DO 80 I = K, 1, -1
C
C Apply F(I) to Q1(I+1:N,I:M) from the right and to
C Q2(I:M,I+1:N) from the left.
C
CALL DCOPY( M-I+1, Q2(I,I), 1, DWORK, 1 )
IF ( I.LT.N ) THEN
Q1(I,I) = ONE
CALL DLARF( 'Right', N-I, M-I+1, Q1(I,I), LDQ1, TAU(I),
$ Q1(I+1,I), LDQ1, DWORK(M+1) )
CALL DLARF( 'Left', M-I+1, N-I, Q1(I,I), LDQ1, TAU(I),
$ Q2(I,I+1), LDQ2, DWORK(M+1) )
END IF
IF ( I.LT.M )
$ CALL DSCAL( M-I, -TAU(I), Q1(I,I+1), LDQ1 )
Q1(I,I) = ONE - TAU(I)
C
C Set Q1(I,1:I-1) and Q2(1:M,I) to zero.
C
DO 60 J = 1, I - 1
Q1(I,J) = ZERO
60 CONTINUE
DO 70 J = 1, M
Q2(J,I) = ZERO
70 CONTINUE
C
C Apply G(I) to Q1(I:N,I) from the right and to Q2(I,I:N)
C from the left.
C
CALL DROT( N-I+1, Q1(I,I), 1, Q2(I,I), LDQ2, CS(2*I-1),
$ CS(2*I) )
C
C Apply H(I) to Q1(I:N,I:M) from the right and to Q2(I:M,I:N)
C from the left.
C
NU = DWORK(1)
DWORK(1) = ONE
CALL DLARF( 'Right', N-I+1, M-I+1, DWORK, 1, NU, Q1(I,I),
$ LDQ1, DWORK(M+1) )
CALL DLARF( 'Left', M-I+1, N-I+1, DWORK, 1, NU, Q2(I,I),
$ LDQ2, DWORK(M+1) )
80 CONTINUE
ELSE IF ( LTRQ2 ) THEN
DO 110 I = K, 1, -1
C
C Apply F(I) to Q1(I:M,I+1:N) from the left and to
C Q2(I+1:N,I:M) from the right.
C
CALL DCOPY( M-I+1, Q2(I,I), LDQ2, DWORK, 1 )
IF ( I.LT.N ) THEN
Q1(I,I) = ONE
CALL DLARF( 'Left', M-I+1, N-I, Q1(I,I), 1, TAU(I),
$ Q1(I,I+1), LDQ1, DWORK(M+1) )
CALL DLARF( 'Right', N-I, M-I+1, Q1(I,I), 1, TAU(I),
$ Q2(I+1,I), LDQ2, DWORK(M+1) )
END IF
IF ( I.LT.M )
$ CALL DSCAL( M-I, -TAU(I), Q1(I+1,I), 1 )
Q1(I,I) = ONE - TAU(I)
C
C Set Q1(1:I-1,I) and Q2(I,1:M) to zero.
C
DO 90 J = 1, I - 1
Q1(J,I) = ZERO
90 CONTINUE
DO 100 J = 1, M
Q2(I,J) = ZERO
100 CONTINUE
C
C Apply G(I) to Q1(I,I:N) from the left and to Q2(I:N,I)
C from the right.
C
CALL DROT( N-I+1, Q1(I,I), LDQ1, Q2(I,I), 1, CS(2*I-1),
$ CS(2*I) )
C
C Apply H(I) to Q1(I:M,I:N) from the left and to Q2(I:N,I:M)
C from the left.
C
NU = DWORK(1)
DWORK(1) = ONE
CALL DLARF( 'Left', M-I+1, N-I+1, DWORK, 1, NU, Q1(I,I),
$ LDQ1, DWORK(M+1) )
CALL DLARF( 'Right', N-I+1, M-I+1, DWORK, 1, NU, Q2(I,I),
$ LDQ2, DWORK(M+1) )
110 CONTINUE
ELSE
DO 140 I = K, 1, -1
C
C Apply F(I) to Q1(I:M,I+1:N) and Q2(I:M,I+1:N) from the left.
C
CALL DCOPY( M-I+1, Q2(I,I), 1, DWORK, 1 )
IF ( I.LT.N ) THEN
Q1(I,I) = ONE
CALL DLARF( 'Left', M-I+1, N-I, Q1(I,I), 1, TAU(I),
$ Q1(I,I+1), LDQ1, DWORK(M+1) )
CALL DLARF( 'Left', M-I+1, N-I, Q1(I,I), 1, TAU(I),
$ Q2(I,I+1), LDQ2, DWORK(M+1) )
END IF
IF ( I.LT.M )
$ CALL DSCAL( M-I, -TAU(I), Q1(I+1,I), 1 )
Q1(I,I) = ONE - TAU(I)
C
C Set Q1(1:I-1,I) and Q2(1:M,I) to zero.
C
DO 120 J = 1, I - 1
Q1(J,I) = ZERO
120 CONTINUE
DO 130 J = 1, M
Q2(J,I) = ZERO
130 CONTINUE
C
C Apply G(I) to Q1(I,I:N) and Q2(I,I:N) from the left.
C
CALL DROT( N-I+1, Q1(I,I), LDQ1, Q2(I,I), LDQ2, CS(2*I-1),
$ CS(2*I) )
C
C Apply H(I) to Q1(I:M,I:N) and Q2(I:M,I:N) from the left.
C
NU = DWORK(1)
DWORK(1) = ONE
CALL DLARF( 'Left', M-I+1, N-I+1, DWORK, 1, NU, Q1(I,I),
$ LDQ1, DWORK(M+1) )
CALL DLARF( 'Left', M-I+1, N-I+1, DWORK, 1, NU, Q2(I,I),
$ LDQ2, DWORK(M+1) )
140 CONTINUE
END IF
DWORK(1) = DBLE( MAX( 1, M+N ) )
C *** Last line of MB04WU ***
END
|