File: MB04WU.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (402 lines) | stat: -rw-r--r-- 14,166 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
      SUBROUTINE MB04WU( TRANQ1, TRANQ2, M, N, K, Q1, LDQ1, Q2, LDQ2,
     $                   CS, TAU, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To generate a matrix Q with orthogonal columns (spanning an
C     isotropic subspace), which is defined as the first n columns
C     of a product of symplectic reflectors and Givens rotators,
C
C         Q = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )
C             diag( H(2),H(2) ) G(2) diag( F(2),F(2) )
C                               ....
C             diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).
C
C     The matrix Q is returned in terms of its first 2*M rows
C
C                      [  op( Q1 )   op( Q2 ) ]
C                  Q = [                      ].
C                      [ -op( Q2 )   op( Q1 ) ]
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     TRANQ1  CHARACTER*1
C             Specifies the form of op( Q1 ) as follows:
C             = 'N':  op( Q1 ) = Q1;
C             = 'T':  op( Q1 ) = Q1';
C             = 'C':  op( Q1 ) = Q1'.
C
C     TRANQ2  CHARACTER*1
C             Specifies the form of op( Q2 ) as follows:
C             = 'N':  op( Q2 ) = Q2;
C             = 'T':  op( Q2 ) = Q2';
C             = 'C':  op( Q2 ) = Q2'.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows of the matrices Q1 and Q2. M >= 0.
C
C     N       (input) INTEGER
C             The number of columns of the matrices Q1 and Q2.
C             M >= N >= 0.
C
C     K       (input) INTEGER
C             The number of symplectic Givens rotators whose product
C             partly defines the matrix Q. N >= K >= 0.
C
C     Q1      (input/output) DOUBLE PRECISION array, dimension
C                     (LDQ1,N) if TRANQ1 = 'N',
C                     (LDQ1,M) if TRANQ1 = 'T' or TRANQ1 = 'C'
C             On entry with TRANQ1 = 'N', the leading M-by-K part of
C             this array must contain in its i-th column the vector
C             which defines the elementary reflector F(i).
C             On entry with TRANQ1 = 'T' or TRANQ1 = 'C', the leading
C             K-by-M part of this array must contain in its i-th row
C             the vector which defines the elementary reflector F(i).
C             On exit with TRANQ1 = 'N', the leading M-by-N part of this
C             array contains the matrix Q1.
C             On exit with TRANQ1 = 'T' or TRANQ1 = 'C', the leading
C             N-by-M part of this array contains the matrix Q1'.
C
C     LDQ1    INTEGER
C             The leading dimension of the array Q1.
C             LDQ1 >= MAX(1,M),  if TRANQ1 = 'N';
C             LDQ1 >= MAX(1,N),  if TRANQ1 = 'T' or TRANQ1 = 'C'.
C
C     Q2      (input/output) DOUBLE PRECISION array, dimension
C                     (LDQ2,N) if TRANQ2 = 'N',
C                     (LDQ2,M) if TRANQ2 = 'T' or TRANQ2 = 'C'
C             On entry with TRANQ2 = 'N', the leading M-by-K part of
C             this array must contain in its i-th column the vector
C             which defines the elementary reflector H(i) and, on the
C             diagonal, the scalar factor of H(i).
C             On entry with TRANQ2 = 'T' or TRANQ2 = 'C', the leading
C             K-by-M part of this array must contain in its i-th row the
C             vector which defines the elementary reflector H(i) and, on
C             the diagonal, the scalar factor of H(i).
C             On exit with TRANQ2 = 'N', the leading M-by-N part of this
C             array contains the matrix Q2.
C             On exit with TRANQ2 = 'T' or TRANQ2 = 'C', the leading
C             N-by-M part of this array contains the matrix Q2'.
C
C     LDQ2    INTEGER
C             The leading dimension of the array Q2.
C             LDQ2 >= MAX(1,M),  if TRANQ2 = 'N';
C             LDQ2 >= MAX(1,N),  if TRANQ2 = 'T' or TRANQ2 = 'C'.
C
C     CS      (input) DOUBLE PRECISION array, dimension (2*K)
C             On entry, the first 2*K elements of this array must
C             contain the cosines and sines of the symplectic Givens
C             rotators G(i).
C
C     TAU     (input) DOUBLE PRECISION array, dimension (K)
C             On entry, the first K elements of this array must
C             contain the scalar factors of the elementary reflectors
C             F(i).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0,  DWORK(1)  returns the optimal
C             value of LDWORK.
C             On exit, if  INFO = -13,  DWORK(1)  returns the minimum
C             value of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= MAX(1,M+N).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     REFERENCES
C
C     [1] Bunse-Gerstner, A.
C         Matrix factorizations for symplectic QR-like methods.
C         Linear Algebra Appl., 83, pp. 49-77, 1986.
C
C     CONTRIBUTORS
C
C     D. Kressner, Technical Univ. Berlin, Germany, and
C     P. Benner, Technical Univ. Chemnitz, Germany, December 2003.
C
C     REVISIONS
C
C     V. Sima, June 2008 (SLICOT version of the HAPACK routine DOSGSQ).
C
C     KEYWORDS
C
C     Elementary matrix operations, orthogonal symplectic matrix.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C     .. Scalar Arguments ..
      CHARACTER         TRANQ1, TRANQ2
      INTEGER           INFO, K, LDQ1, LDQ2, LDWORK, M, N
C     .. Array Arguments ..
      DOUBLE PRECISION  CS(*), DWORK(*), Q1(LDQ1,*), Q2(LDQ2,*), TAU(*)
C     .. Local Scalars ..
      LOGICAL           LTRQ1, LTRQ2
      INTEGER           I, J
      DOUBLE PRECISION  NU
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DLARF, DLASET, DROT, DSCAL, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, MAX
C
C     .. Executable Statements ..
C
C     Decode the scalar input parameters.
C
      INFO  = 0
      LTRQ1 = LSAME( TRANQ1,'T' ) .OR. LSAME( TRANQ1,'C' )
      LTRQ2 = LSAME( TRANQ2,'T' ) .OR. LSAME( TRANQ2,'C' )
C
C     Check the scalar input parameters.
C
      IF ( .NOT.( LTRQ1 .OR. LSAME( TRANQ1, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF ( .NOT.( LTRQ2 .OR. LSAME( TRANQ2, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF ( M.LT.0 ) THEN
         INFO = -3
      ELSE IF ( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -4
      ELSE IF ( K.LT.0 .OR. K.GT.N ) THEN
         INFO = -5
      ELSE IF ( ( LTRQ1 .AND. LDQ1.LT.MAX( 1, N ) ) .OR.
     $     ( .NOT.LTRQ1 .AND. LDQ1.LT.MAX( 1, M ) ) ) THEN
         INFO = -7
      ELSE IF ( ( LTRQ2 .AND. LDQ2.LT.MAX( 1, N ) ) .OR.
     $     ( .NOT.LTRQ2 .AND. LDQ2.LT.MAX( 1, M ) ) ) THEN
         INFO = -9
      ELSE IF ( LDWORK.LT.MAX( 1,M + N ) ) THEN
         DWORK(1) = DBLE( MAX( 1,M + N ) )
         INFO = -13
      END IF
C
C     Return if there were illegal values.
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB04WU', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 ) THEN
         DWORK(1) = ONE
         RETURN
      END IF
C
C     Initialize columns K+1:N to columns of the unit matrix.
C
      DO 20 J = K + 1, N
         DO 10 I = 1, M
            Q1(I,J) = ZERO
   10    CONTINUE
         Q1(J,J) = ONE
   20 CONTINUE
      CALL DLASET( 'All', M, N-K, ZERO, ZERO, Q2(1,K+1), LDQ2 )
C
      IF ( LTRQ1.AND.LTRQ2 ) THEN
         DO 50 I = K, 1, -1
C
C           Apply F(I) to Q1(I+1:N,I:M) and Q2(I+1:N,I:M) from the
C           right.
C
            CALL DCOPY( M-I+1, Q2(I,I), LDQ2, DWORK, 1 )
            IF ( I.LT.N ) THEN
               Q1(I,I) = ONE
               CALL DLARF( 'Right', N-I, M-I+1, Q1(I,I), LDQ1, TAU(I),
     $                     Q1(I+1,I), LDQ1, DWORK(M+1) )
               CALL DLARF( 'Right', N-I, M-I+1, Q1(I,I), LDQ1, TAU(I),
     $                     Q2(I+1,I), LDQ2, DWORK(M+1) )
            END IF
            IF ( I.LT.M )
     $         CALL DSCAL( M-I, -TAU(I), Q1(I,I+1), LDQ1 )
            Q1(I,I) = ONE - TAU(I)
C
C           Set Q1(I,1:I-1) and Q2(I,1:M) to zero.
C
            DO 30 J = 1, I - 1
               Q1(I,J) = ZERO
   30       CONTINUE
            DO 40 J = 1, M
               Q2(I,J) = ZERO
   40       CONTINUE
C
C           Apply G(I) to Q1(I:N,I) and Q2(I:N,I) from the right.
C
            CALL DROT( N-I+1, Q1(I,I), 1, Q2(I,I), 1, CS(2*I-1),
     $                 CS(2*I) )
C
C           Apply H(I) to Q1(I:N,I:M) and Q2(I:N,I:M) from the right.
C
            NU = DWORK(1)
            DWORK(1) = ONE
            CALL DLARF( 'Right', N-I+1, M-I+1, DWORK, 1, NU, Q1(I,I),
     $                  LDQ1, DWORK(M+1) )
            CALL DLARF( 'Right', N-I+1, M-I+1, DWORK, 1, NU, Q2(I,I),
     $                  LDQ2, DWORK(M+1) )
   50    CONTINUE
      ELSE IF ( LTRQ1 ) THEN
         DO 80 I = K, 1, -1
C
C           Apply F(I) to Q1(I+1:N,I:M) from the right and to
C           Q2(I:M,I+1:N) from the left.
C
            CALL DCOPY( M-I+1, Q2(I,I), 1, DWORK, 1 )
            IF ( I.LT.N ) THEN
               Q1(I,I) = ONE
               CALL DLARF( 'Right', N-I, M-I+1, Q1(I,I), LDQ1, TAU(I),
     $                     Q1(I+1,I), LDQ1, DWORK(M+1) )
               CALL DLARF( 'Left', M-I+1, N-I, Q1(I,I), LDQ1, TAU(I),
     $                     Q2(I,I+1), LDQ2, DWORK(M+1) )
            END IF
            IF ( I.LT.M )
     $         CALL DSCAL( M-I, -TAU(I), Q1(I,I+1), LDQ1 )
            Q1(I,I) = ONE - TAU(I)
C
C           Set Q1(I,1:I-1) and Q2(1:M,I) to zero.
C
            DO 60 J = 1, I - 1
               Q1(I,J) = ZERO
   60       CONTINUE
            DO 70 J = 1, M
               Q2(J,I) = ZERO
   70       CONTINUE
C
C           Apply G(I) to Q1(I:N,I) from the right and to Q2(I,I:N)
C           from the left.
C
            CALL DROT( N-I+1, Q1(I,I), 1, Q2(I,I), LDQ2, CS(2*I-1),
     $                 CS(2*I) )
C
C           Apply H(I) to Q1(I:N,I:M) from the right and to Q2(I:M,I:N)
C           from the left.
C
            NU = DWORK(1)
            DWORK(1) = ONE
            CALL DLARF( 'Right', N-I+1, M-I+1, DWORK, 1, NU, Q1(I,I),
     $                  LDQ1, DWORK(M+1) )
            CALL DLARF( 'Left', M-I+1, N-I+1, DWORK, 1, NU, Q2(I,I),
     $                  LDQ2, DWORK(M+1) )
   80    CONTINUE
      ELSE IF ( LTRQ2 ) THEN
         DO 110 I = K, 1, -1
C
C           Apply F(I) to Q1(I:M,I+1:N) from the left and to
C           Q2(I+1:N,I:M) from the right.
C
            CALL DCOPY( M-I+1, Q2(I,I), LDQ2, DWORK, 1 )
            IF ( I.LT.N ) THEN
               Q1(I,I) = ONE
               CALL DLARF( 'Left', M-I+1, N-I, Q1(I,I), 1, TAU(I),
     $                     Q1(I,I+1), LDQ1, DWORK(M+1) )
               CALL DLARF( 'Right', N-I, M-I+1, Q1(I,I), 1, TAU(I),
     $                     Q2(I+1,I), LDQ2, DWORK(M+1) )
            END IF
            IF ( I.LT.M )
     $         CALL DSCAL( M-I, -TAU(I), Q1(I+1,I), 1 )
            Q1(I,I) = ONE - TAU(I)
C
C           Set Q1(1:I-1,I) and Q2(I,1:M) to zero.
C
            DO 90 J = 1, I - 1
               Q1(J,I) = ZERO
   90       CONTINUE
            DO 100 J = 1, M
               Q2(I,J) = ZERO
  100       CONTINUE
C
C           Apply G(I) to Q1(I,I:N) from the left and to Q2(I:N,I)
C           from the right.
C
            CALL DROT( N-I+1, Q1(I,I), LDQ1, Q2(I,I), 1, CS(2*I-1),
     $                 CS(2*I) )
C
C           Apply H(I) to Q1(I:M,I:N) from the left and to Q2(I:N,I:M)
C           from the left.
C
            NU = DWORK(1)
            DWORK(1) = ONE
            CALL DLARF( 'Left', M-I+1, N-I+1, DWORK, 1, NU, Q1(I,I),
     $                  LDQ1, DWORK(M+1) )
            CALL DLARF( 'Right', N-I+1, M-I+1, DWORK, 1, NU, Q2(I,I),
     $                  LDQ2, DWORK(M+1) )
  110    CONTINUE
      ELSE
         DO 140 I = K, 1, -1
C
C           Apply F(I) to Q1(I:M,I+1:N) and Q2(I:M,I+1:N) from the left.
C
            CALL DCOPY( M-I+1, Q2(I,I), 1, DWORK, 1 )
            IF ( I.LT.N ) THEN
               Q1(I,I) = ONE
               CALL DLARF( 'Left', M-I+1, N-I, Q1(I,I), 1, TAU(I),
     $                     Q1(I,I+1), LDQ1, DWORK(M+1) )
               CALL DLARF( 'Left', M-I+1, N-I, Q1(I,I), 1, TAU(I),
     $                     Q2(I,I+1), LDQ2, DWORK(M+1) )
            END IF
            IF ( I.LT.M )
     $         CALL DSCAL( M-I, -TAU(I), Q1(I+1,I), 1 )
            Q1(I,I) = ONE - TAU(I)
C
C           Set Q1(1:I-1,I) and Q2(1:M,I) to zero.
C
            DO 120 J = 1, I - 1
               Q1(J,I) = ZERO
  120       CONTINUE
            DO 130 J = 1, M
               Q2(J,I) = ZERO
  130       CONTINUE
C
C           Apply G(I) to Q1(I,I:N) and Q2(I,I:N) from the left.
C
            CALL DROT( N-I+1, Q1(I,I), LDQ1, Q2(I,I), LDQ2, CS(2*I-1),
     $                 CS(2*I) )
C
C           Apply H(I) to Q1(I:M,I:N) and Q2(I:M,I:N) from the left.
C
            NU = DWORK(1)
            DWORK(1) = ONE
            CALL DLARF( 'Left', M-I+1, N-I+1, DWORK, 1, NU, Q1(I,I),
     $                  LDQ1, DWORK(M+1) )
            CALL DLARF( 'Left', M-I+1, N-I+1, DWORK, 1, NU, Q2(I,I),
     $                  LDQ2, DWORK(M+1) )
  140    CONTINUE
      END IF
      DWORK(1) = DBLE( MAX( 1, M+N ) )
C *** Last line of MB04WU ***
      END