1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
|
SUBROUTINE MB04YD( JOBU, JOBV, M, N, RANK, THETA, Q, E, U, LDU, V,
$ LDV, INUL, TOL, RELTOL, DWORK, LDWORK, IWARN,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To partially diagonalize the bidiagonal matrix
C
C |q(1) e(1) 0 ... 0 |
C | 0 q(2) e(2) . |
C J = | . . | (1)
C | . e(MIN(M,N)-1)|
C | 0 ... ... q(MIN(M,N)) |
C
C using QR or QL iterations in such a way that J is split into
C unreduced bidiagonal submatrices whose singular values are either
C all larger than a given bound or are all smaller than (or equal
C to) this bound. The left- and right-hand Givens rotations
C performed on J (corresponding to each QR or QL iteration step) may
C be optionally accumulated in the arrays U and V.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOBU CHARACTER*1
C Indicates whether the user wishes to accumulate in a
C matrix U the left-hand Givens rotations, as follows:
C = 'N': Do not form U;
C = 'I': U is initialized to the M-by-MIN(M,N) submatrix of
C the unit matrix and the left-hand Givens rotations
C are accumulated in U;
C = 'U': The given matrix U is updated by the left-hand
C Givens rotations used in the calculation.
C
C JOBV CHARACTER*1
C Indicates whether the user wishes to accumulate in a
C matrix V the right-hand Givens rotations, as follows:
C = 'N': Do not form V;
C = 'I': V is initialized to the N-by-MIN(M,N) submatrix of
C the unit matrix and the right-hand Givens
C rotations are accumulated in V;
C = 'U': The given matrix V is updated by the right-hand
C Givens rotations used in the calculation.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows in matrix U. M >= 0.
C
C N (input) INTEGER
C The number of rows in matrix V. N >= 0.
C
C RANK (input/output) INTEGER
C On entry, if RANK < 0, then the rank of matrix J is
C computed by the routine as the number of singular values
C larger than THETA.
C Otherwise, RANK must specify the rank of matrix J.
C RANK <= MIN(M,N).
C On exit, if RANK < 0 on entry, then RANK contains the
C computed rank of J. That is, the number of singular
C values of J larger than THETA.
C Otherwise, the user-supplied value of RANK may be
C changed by the routine on exit if the RANK-th and the
C (RANK+1)-th singular values of J are considered to be
C equal. See also the parameter TOL.
C
C THETA (input/output) DOUBLE PRECISION
C On entry, if RANK < 0, then THETA must specify an upper
C bound on the smallest singular values of J. THETA >= 0.0.
C Otherwise, THETA must specify an initial estimate (t say)
C for computing an upper bound such that precisely RANK
C singular values are greater than this bound.
C If THETA < 0.0, then t is computed by the routine.
C On exit, if RANK >= 0 on entry, then THETA contains the
C computed upper bound such that precisely RANK singular
C values of J are greater than THETA + TOL.
C Otherwise, THETA is unchanged.
C
C Q (input/output) DOUBLE PRECISION array, dimension
C (MIN(M,N))
C On entry, this array must contain the diagonal elements
C q(1),q(2),...,q(MIN(M,N)) of the bidiagonal matrix J. That
C is, Q(i) = J(i,i) for i = 1,2,...,MIN(M,N).
C On exit, this array contains the leading diagonal of the
C transformed bidiagonal matrix J.
C
C E (input/output) DOUBLE PRECISION array, dimension
C (MIN(M,N)-1)
C On entry, this array must contain the superdiagonal
C elements e(1),e(2),...,e(MIN(M,N)-1) of the bidiagonal
C matrix J. That is, E(k) = J(k,k+1) for k = 1,2,...,
C MIN(M,N)-1.
C On exit, this array contains the superdiagonal of the
C transformed bidiagonal matrix J.
C
C U (input/output) DOUBLE PRECISION array, dimension (LDU,*)
C On entry, if JOBU = 'U', the leading M-by-MIN(M,N) part
C of this array must contain a left transformation matrix
C applied to the original matrix of the problem, and
C on exit, the leading M-by-MIN(M,N) part of this array
C contains the product of the input matrix U and the
C left-hand Givens rotations.
C On exit, if JOBU = 'I', then the leading M-by-MIN(M,N)
C part of this array contains the matrix of accumulated
C left-hand Givens rotations used.
C If JOBU = 'N', the array U is not referenced and can be
C supplied as a dummy array (i.e. set parameter LDU = 1 and
C declare this array to be U(1,1) in the calling program).
C
C LDU INTEGER
C The leading dimension of array U. If JOBU = 'U' or
C JOBU = 'I', LDU >= MAX(1,M); if JOBU = 'N', LDU >= 1.
C
C V (input/output) DOUBLE PRECISION array, dimension (LDV,*)
C On entry, if JOBV = 'U', the leading N-by-MIN(M,N) part
C of this array must contain a right transformation matrix
C applied to the original matrix of the problem, and
C on exit, the leading N-by-MIN(M,N) part of this array
C contains the product of the input matrix V and the
C right-hand Givens rotations.
C On exit, if JOBV = 'I', then the leading N-by-MIN(M,N)
C part of this array contains the matrix of accumulated
C right-hand Givens rotations used.
C If JOBV = 'N', the array V is not referenced and can be
C supplied as a dummy array (i.e. set parameter LDV = 1 and
C declare this array to be V(1,1) in the calling program).
C
C LDV INTEGER
C The leading dimension of array V. If JOBV = 'U' or
C JOBV = 'I', LDV >= MAX(1,N); if JOBV = 'N', LDV >= 1.
C
C INUL (input/output) LOGICAL array, dimension (MIN(M,N))
C On entry, the leading MIN(M,N) elements of this array must
C be set to .FALSE. unless the i-th columns of U (if JOBU =
C 'U') and V (if JOBV = 'U') already contain a computed base
C vector of the desired singular subspace of the original
C matrix, in which case INUL(i) must be set to .TRUE.
C for 1 <= i <= MIN(M,N).
C On exit, the indices of the elements of this array with
C value .TRUE. indicate the indices of the diagonal entries
C of J which belong to those bidiagonal submatrices whose
C singular values are all less than or equal to THETA.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C This parameter defines the multiplicity of singular values
C by considering all singular values within an interval of
C length TOL as coinciding. TOL is used in checking how many
C singular values are less than or equal to THETA. Also in
C computing an appropriate upper bound THETA by a bisection
C method, TOL is used as a stopping criterion defining the
C minimum (absolute) subinterval width. TOL is also taken
C as an absolute tolerance for negligible elements in the
C QR/QL iterations. If the user sets TOL to be less than or
C equal to 0, then the tolerance is taken as
C EPS * MAX(ABS(Q(i)), ABS(E(k))), where EPS is the
C machine precision (see LAPACK Library routine DLAMCH),
C i = 1,2,...,MIN(M,N) and k = 1,2,...,MIN(M,N)-1.
C
C RELTOL DOUBLE PRECISION
C This parameter specifies the minimum relative width of an
C interval. When an interval is narrower than TOL, or than
C RELTOL times the larger (in magnitude) endpoint, then it
C is considered to be sufficiently small and bisection has
C converged. If the user sets RELTOL to be less than
C BASE * EPS, where BASE is machine radix and EPS is machine
C precision (see LAPACK Library routine DLAMCH), then the
C tolerance is taken as BASE * EPS.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(1,6*MIN(M,N)-5), if JOBU = 'I' or 'U', or
C JOBV = 'I' or 'U';
C LDWORK >= MAX(1,4*MIN(M,N)-3), if JOBU = 'N' and
C JOBV = 'N'.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = 1: if the rank of the bidiagonal matrix J (as specified
C by the user) has been lowered because a singular
C value of multiplicity larger than 1 was found.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value; this includes values like RANK > MIN(M,N), or
C THETA < 0.0 and RANK < 0;
C = 1: if the maximum number of QR/QL iteration steps
C (30*MIN(M,N)) has been exceeded.
C
C METHOD
C
C If the upper bound THETA is not specified by the user, then it is
C computed by the routine (using a bisection method) such that
C precisely (MIN(M,N) - RANK) singular values of J are less than or
C equal to THETA + TOL.
C
C The method used by the routine (see [1]) then proceeds as follows.
C
C The unreduced bidiagonal submatrices of J(j), where J(j) is the
C transformed bidiagonal matrix after the j-th iteration step, are
C classified into the following three classes:
C
C - C1 contains the bidiagonal submatrices with all singular values
C > THETA,
C - C2 contains the bidiagonal submatrices with all singular values
C <= THETA and
C - C3 contains the bidiagonal submatrices with singular values
C > THETA and also singular values <= THETA.
C
C If C3 is empty, then the partial diagonalization is complete, and
C RANK is the sum of the dimensions of the bidiagonal submatrices of
C C1.
C Otherwise, QR or QL iterations are performed on each bidiagonal
C submatrix of C3, until this bidiagonal submatrix has been split
C into two bidiagonal submatrices. These two submatrices are then
C classified and the iterations are restarted.
C If the upper left diagonal element of the bidiagonal submatrix is
C larger than its lower right diagonal element, then QR iterations
C are performed, else QL iterations are used. The shift is taken as
C the smallest diagonal element of the bidiagonal submatrix (in
C magnitude) unless its value exceeds THETA, in which case it is
C taken as zero.
C
C REFERENCES
C
C [1] Van Huffel, S., Vandewalle, J. and Haegemans, A.
C An efficient and reliable algorithm for computing the
C singular subspace of a matrix associated with its smallest
C singular values.
C J. Comput. and Appl. Math., 19, pp. 313-330, 1987.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C To avoid overflow, matrix J is scaled so that its largest element
C is no greater than overflow**(1/2) * underflow**(1/4) in absolute
C value (and not much smaller than that, for maximal accuracy).
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, June 1997.
C Supersedes Release 2.0 routine MB04QD by S. Van Huffel, Katholieke
C University Leuven, Belgium.
C
C REVISIONS
C
C July 10, 1997. V. Sima.
C November 25, 1997. V. Sima: Setting INUL(K) = .TRUE. when handling
C 2-by-2 submatrix.
C
C KEYWORDS
C
C Bidiagonal matrix, orthogonal transformation, singular values.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TEN, HNDRD
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0,
$ HNDRD = 100.0D0 )
DOUBLE PRECISION MEIGTH
PARAMETER ( MEIGTH = -0.125D0 )
INTEGER MAXITR
PARAMETER ( MAXITR = 30 )
C .. Scalar Arguments ..
CHARACTER JOBU, JOBV
INTEGER INFO, IWARN, LDU, LDV, LDWORK, M, N, RANK
DOUBLE PRECISION RELTOL, THETA, TOL
C .. Array Arguments ..
LOGICAL INUL(*)
DOUBLE PRECISION DWORK(*), E(*), Q(*), U(LDU,*), V(LDV,*)
C .. Local Scalars ..
LOGICAL LJOBUA, LJOBUI, LJOBVA, LJOBVI, NOC12, QRIT
INTEGER I, I1, IASCL, INFO1, ITER, J, K, MAXIT, NUMEIG,
$ OLDI, OLDK, P, R
DOUBLE PRECISION COSL, COSR, EPS, PIVMIN, RMAX, RMIN, SAFEMN,
$ SHIFT, SIGMA, SIGMN, SIGMX, SINL, SINR, SMAX,
$ SMLNUM, THETAC, THRESH, TOLABS, TOLREL, X
C .. External Functions ..
LOGICAL LSAME
INTEGER MB03ND
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME, MB03ND
C .. External Subroutines ..
EXTERNAL DLASET, DLASV2, DROT, DSCAL, MB02NY, MB03MD,
$ MB04YW, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, SQRT
C .. Executable Statements ..
C
P = MIN( M, N )
INFO = 0
IWARN = 0
LJOBUI = LSAME( JOBU, 'I' )
LJOBVI = LSAME( JOBV, 'I' )
LJOBUA = LJOBUI.OR.LSAME( JOBU, 'U' )
LJOBVA = LJOBVI.OR.LSAME( JOBV, 'U' )
C
C Test the input scalar arguments.
C
IF( .NOT.LJOBUA .AND. .NOT.LSAME( JOBU, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.LJOBVA .AND. .NOT.LSAME( JOBV, 'N' ) ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( RANK.GT.P ) THEN
INFO = -5
ELSE IF( RANK.LT.0 .AND. THETA.LT.ZERO ) THEN
INFO = -6
ELSE IF( .NOT.LJOBUA .AND. LDU.LT.1 .OR.
$ LJOBUA .AND. LDU.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( .NOT.LJOBVA .AND. LDV.LT.1 .OR.
$ LJOBVA .AND. LDV.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( ( ( LJOBUA.OR.LJOBVA ) .AND. LDWORK.LT.MAX( 1, 6*P-5 ) )
$ .OR.(.NOT.( LJOBUA.OR.LJOBVA ) .AND. LDWORK.LT.MAX( 1, 4*P-3 ) )
$ ) THEN
INFO = -17
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB04YD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( P.EQ.0 ) THEN
IF ( RANK.GE.0 )
$ THETA = ZERO
RANK = 0
RETURN
END IF
C
C Set tolerances and machine parameters.
C
TOLABS = TOL
TOLREL = RELTOL
SMAX = ABS( Q(P) )
C
DO 20 J = 1, P - 1
SMAX = MAX( SMAX, ABS( Q(J) ), ABS( E(J) ) )
20 CONTINUE
C
SAFEMN = DLAMCH( 'Safe minimum' )
EPS = DLAMCH( 'Epsilon' )
IF ( TOLABS.LE.ZERO ) TOLABS = EPS*SMAX
X = DLAMCH( 'Base' )*EPS
IF ( TOLREL.LE.X ) TOLREL = X
THRESH = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )*EPS
SMLNUM = SAFEMN / EPS
RMIN = SQRT( SMLNUM )
RMAX = MIN( ONE / RMIN, ONE / SQRT( SQRT( SAFEMN ) ) )
THETAC = THETA
C
C Scale the matrix to allowable range, if necessary, and set PIVMIN,
C using the squares of Q and E (saved in DWORK).
C
IASCL = 0
IF( SMAX.GT.ZERO .AND. SMAX.LT.RMIN ) THEN
IASCL = 1
SIGMA = RMIN / SMAX
ELSE IF( SMAX.GT.RMAX ) THEN
IASCL = 1
SIGMA = RMAX / SMAX
END IF
IF( IASCL.EQ.1 ) THEN
CALL DSCAL( P, SIGMA, Q, 1 )
CALL DSCAL( P-1, SIGMA, E, 1 )
THETAC = SIGMA*THETA
TOLABS = SIGMA*TOLABS
END IF
C
PIVMIN = Q(P)**2
DWORK(P) = PIVMIN
C
DO 40 J = 1, P - 1
DWORK(J) = Q(J)**2
DWORK(P+J) = E(J)**2
PIVMIN = MAX( PIVMIN, DWORK(J), DWORK(P+J) )
40 CONTINUE
C
PIVMIN = MAX( PIVMIN*SAFEMN, SAFEMN )
C
C Initialize U and/or V to the identity matrix, if needed.
C
IF ( LJOBUI )
$ CALL DLASET( 'Full', M, P, ZERO, ONE, U, LDU )
IF ( LJOBVI )
$ CALL DLASET( 'Full', N, P, ZERO, ONE, V, LDV )
C
C Estimate THETA (if not fixed by the user), and set R.
C
IF ( RANK.GE.0 ) THEN
J = P - RANK
CALL MB03MD( P, J, THETAC, Q, E, DWORK(1), DWORK(P+1), PIVMIN,
$ TOLABS, TOLREL, IWARN, INFO1 )
THETA = THETAC
IF ( IASCL.EQ.1 ) THETA = THETA / SIGMA
IF ( J.LE.0 )
$ RETURN
R = P - J
ELSE
R = P - MB03ND( P, THETAC, DWORK, DWORK(P+1), PIVMIN, INFO1 )
END IF
C
RANK = P
C
DO 60 I = 1, P
IF ( INUL(I) ) RANK = RANK - 1
60 CONTINUE
C
C From now on K is the smallest known index such that the elements
C of the bidiagonal matrix J with indices larger than K belong to C1
C or C2.
C RANK = P - SUM(dimensions of known bidiagonal matrices of C2).
C
K = P
OLDI = -1
OLDK = -1
ITER = 0
MAXIT = MAXITR*P
C WHILE ( C3 NOT EMPTY ) DO
80 IF ( RANK.GT.R .AND. K.GT.0 ) THEN
C WHILE ( K.GT.0 .AND. INUL(K) ) DO
C
C Search for the rightmost index of a bidiagonal submatrix,
C not yet classified.
C
100 IF ( K.GT.0 ) THEN
IF ( INUL(K) ) THEN
K = K - 1
GO TO 100
END IF
END IF
C END WHILE 100
C
IF ( K.EQ.0 )
$ RETURN
C
NOC12 = .TRUE.
C WHILE ((ITER < MAXIT).AND.(No bidiagonal matrix of C1 or
C C2 found)) DO
120 IF ( ( ITER.LT.MAXIT ) .AND. NOC12 ) THEN
C
C Search for negligible Q(I) or E(I-1) (for I > 1) and find
C the shift.
C
I = K
X = ABS( Q(I) )
SHIFT = X
C WHILE ABS( Q(I) ) > TOLABS .AND. ABS( E(I-1) ) > TOLABS ) DO
140 IF ( I.GT.1 ) THEN
IF ( ( X.GT.TOLABS ).AND.( ABS( E(I-1) ).GT.TOLABS ) )
$ THEN
I = I - 1
X = ABS( Q(I) )
IF ( X.LT.SHIFT ) SHIFT = X
GO TO 140
END IF
END IF
C END WHILE 140
C
C Classify the bidiagonal submatrix (of order J) found.
C
J = K - I + 1
IF ( ( X.LE.TOLABS ) .OR. ( K.EQ.I ) ) THEN
NOC12 = .FALSE.
ELSE
NUMEIG = MB03ND( J, THETAC, DWORK(I), DWORK(P+I), PIVMIN,
$ INFO1 )
IF ( NUMEIG.GE.J .OR. NUMEIG.LE.0 ) NOC12 = .FALSE.
END IF
IF ( NOC12 ) THEN
IF ( J.EQ.2 ) THEN
C
C Handle separately the 2-by-2 submatrix.
C
CALL DLASV2( Q(I), E(I), Q(K), SIGMN, SIGMX, SINR,
$ COSR, SINL, COSL )
Q(I) = SIGMX
Q(K) = SIGMN
E(I) = ZERO
RANK = RANK - 1
INUL(K) = .TRUE.
NOC12 = .FALSE.
C
C Update U and/or V, if needed.
C
IF( LJOBUA )
$ CALL DROT( M, U(1,I), 1, U(1,K), 1, COSL, SINL )
IF( LJOBVA )
$ CALL DROT( N, V(1,I), 1, V(1,K), 1, COSR, SINR )
ELSE
C
C If working on new submatrix, choose QR or
C QL iteration.
C
IF ( I.NE.OLDI .OR. K.NE.OLDK )
$ QRIT = ABS( Q(I) ).GE.ABS( Q(K) )
OLDI = I
IF ( QRIT ) THEN
IF ( ABS( E(K-1) ).LE.THRESH*ABS( Q(K) ) )
$ E(K-1) = ZERO
ELSE
IF ( ABS( E(I) ).LE.THRESH*ABS( Q(I) ) )
$ E(I) = ZERO
END IF
C
CALL MB04YW( QRIT, LJOBUA, LJOBVA, M, N, I, K, SHIFT,
$ Q, E, U, LDU, V, LDV, DWORK(2*P) )
C
IF ( QRIT ) THEN
IF ( ABS( E(K-1) ).LE.TOLABS ) E(K-1) = ZERO
ELSE
IF ( ABS( E(I) ).LE.TOLABS ) E(I) = ZERO
END IF
DWORK(K) = Q(K)**2
C
DO 160 I1 = I, K - 1
DWORK(I1) = Q(I1)**2
DWORK(P+I1) = E(I1)**2
160 CONTINUE
C
ITER = ITER + 1
END IF
END IF
GO TO 120
END IF
C END WHILE 120
C
IF ( ITER.GE.MAXIT ) THEN
INFO = 1
GO TO 200
END IF
C
IF ( X.LE.TOLABS ) THEN
C
C Split at negligible diagonal element ABS( Q(I) ) <= TOLABS.
C
CALL MB02NY( LJOBUA, LJOBVA, M, N, I, K, Q, E, U, LDU, V,
$ LDV, DWORK(2*P) )
INUL(I) = .TRUE.
RANK = RANK - 1
ELSE
C
C A negligible superdiagonal element ABS( E(I-1) ) <= TOL
C has been found, the corresponding bidiagonal submatrix
C belongs to C1 or C2. Treat this bidiagonal submatrix.
C
IF ( J.GE.2 ) THEN
IF ( NUMEIG.EQ.J ) THEN
C
DO 180 I1 = I, K
INUL(I1) = .TRUE.
180 CONTINUE
C
RANK = RANK - J
K = K - J
ELSE
K = I - 1
END IF
ELSE
IF ( X.LE.( THETAC + TOLABS ) ) THEN
INUL(I) = .TRUE.
RANK = RANK - 1
END IF
K = K - 1
END IF
OLDK = K
END IF
GO TO 80
END IF
C END WHILE 80
C
C If matrix was scaled, then rescale Q and E appropriately.
C
200 CONTINUE
IF( IASCL.EQ.1 ) THEN
CALL DSCAL( P, ONE / SIGMA, Q, 1 )
CALL DSCAL( P-1, ONE / SIGMA, E, 1 )
END IF
C
RETURN
C *** Last line of MB04YD ***
END
|