File: MB04YD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (623 lines) | stat: -rw-r--r-- 23,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
      SUBROUTINE MB04YD( JOBU, JOBV, M, N, RANK, THETA, Q, E, U, LDU, V,
     $                   LDV, INUL, TOL, RELTOL, DWORK, LDWORK, IWARN,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To partially diagonalize the bidiagonal matrix
C
C               |q(1) e(1)  0    ...       0      |
C               | 0   q(2) e(2)            .      |
C           J = | .                        .      |                  (1)
C               | .                  e(MIN(M,N)-1)|
C               | 0   ...        ...  q(MIN(M,N)) |
C
C     using QR or QL iterations in such a way that J is split into
C     unreduced bidiagonal submatrices whose singular values are either
C     all larger than a given bound or are all smaller than (or equal
C     to) this bound. The left- and right-hand Givens rotations
C     performed on J (corresponding to each QR or QL iteration step) may
C     be optionally accumulated in the arrays U and V.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     JOBU    CHARACTER*1
C             Indicates whether the user wishes to accumulate in a
C             matrix U the left-hand Givens rotations, as follows:
C             = 'N':  Do not form U;
C             = 'I':  U is initialized to the M-by-MIN(M,N) submatrix of
C                     the unit matrix and the left-hand Givens rotations
C                     are accumulated in U;
C             = 'U':  The given matrix U is updated by the left-hand
C                     Givens rotations used in the calculation.
C
C     JOBV    CHARACTER*1
C             Indicates whether the user wishes to accumulate in a
C             matrix V the right-hand Givens rotations, as follows:
C             = 'N':  Do not form V;
C             = 'I':  V is initialized to the N-by-MIN(M,N) submatrix of
C                     the unit matrix and the right-hand Givens
C                     rotations are accumulated in V;
C             = 'U':  The given matrix V is updated by the right-hand
C                     Givens rotations used in the calculation.
C
C     Input/Output Parameters
C
C     M       (input) INTEGER
C             The number of rows in matrix U.  M >= 0.
C
C     N       (input) INTEGER
C             The number of rows in matrix V.  N >= 0.
C
C     RANK    (input/output) INTEGER
C             On entry, if RANK < 0, then the rank of matrix J is
C             computed by the routine as the number of singular values
C             larger than THETA.
C             Otherwise, RANK must specify the rank of matrix J.
C             RANK <= MIN(M,N).
C             On exit, if RANK < 0 on entry, then RANK contains the
C             computed rank of J. That is, the number of singular
C             values of J larger than THETA.
C             Otherwise, the user-supplied value of RANK may be
C             changed by the routine on exit if the RANK-th and the
C             (RANK+1)-th singular values of J are considered to be
C             equal. See also the parameter TOL.
C
C     THETA   (input/output) DOUBLE PRECISION
C             On entry, if RANK < 0, then THETA must specify an upper
C             bound on the smallest singular values of J. THETA >= 0.0.
C             Otherwise, THETA must specify an initial estimate (t say)
C             for computing an upper bound such that precisely RANK
C             singular values are greater than this bound.
C             If THETA < 0.0, then t is computed by the routine.
C             On exit, if RANK >= 0 on entry, then THETA contains the
C             computed upper bound such that precisely RANK singular
C             values of J are greater than THETA + TOL.
C             Otherwise, THETA is unchanged.
C
C     Q       (input/output) DOUBLE PRECISION array, dimension
C             (MIN(M,N))
C             On entry, this array must contain the diagonal elements
C             q(1),q(2),...,q(MIN(M,N)) of the bidiagonal matrix J. That
C             is, Q(i) = J(i,i) for i = 1,2,...,MIN(M,N).
C             On exit, this array contains the leading diagonal of the
C             transformed bidiagonal matrix J.
C
C     E       (input/output) DOUBLE PRECISION array, dimension
C             (MIN(M,N)-1)
C             On entry, this array must contain the superdiagonal
C             elements e(1),e(2),...,e(MIN(M,N)-1) of the bidiagonal
C             matrix J. That is, E(k) = J(k,k+1) for k = 1,2,...,
C             MIN(M,N)-1.
C             On exit, this array contains the superdiagonal of the
C             transformed bidiagonal matrix J.
C
C     U       (input/output) DOUBLE PRECISION array, dimension (LDU,*)
C             On entry, if JOBU = 'U', the leading M-by-MIN(M,N) part
C             of this array must contain a left transformation matrix
C             applied to the original matrix of the problem, and
C             on exit, the leading M-by-MIN(M,N) part of this array
C             contains the product of the input matrix U and the
C             left-hand Givens rotations.
C             On exit, if JOBU = 'I', then the leading M-by-MIN(M,N)
C             part of this array contains the matrix of accumulated
C             left-hand Givens rotations used.
C             If JOBU = 'N', the array U is not referenced and can be
C             supplied as a dummy array (i.e. set parameter LDU = 1 and
C             declare this array to be U(1,1) in the calling program).
C
C     LDU     INTEGER
C             The leading dimension of array U. If JOBU = 'U' or
C             JOBU = 'I', LDU >= MAX(1,M); if JOBU = 'N', LDU >= 1.
C
C     V       (input/output) DOUBLE PRECISION array, dimension (LDV,*)
C             On entry, if JOBV = 'U', the leading N-by-MIN(M,N) part
C             of this array must contain a right transformation matrix
C             applied to the original matrix of the problem, and
C             on exit, the leading N-by-MIN(M,N) part of this array
C             contains the product of the input matrix V and the
C             right-hand Givens rotations.
C             On exit, if JOBV = 'I', then the leading N-by-MIN(M,N)
C             part of this array contains the matrix of accumulated
C             right-hand Givens rotations used.
C             If JOBV = 'N', the array V is not referenced and can be
C             supplied as a dummy array (i.e. set parameter LDV = 1 and
C             declare this array to be V(1,1) in the calling program).
C
C     LDV     INTEGER
C             The leading dimension of array V. If JOBV = 'U' or
C             JOBV = 'I', LDV >= MAX(1,N); if JOBV = 'N', LDV >= 1.
C
C     INUL    (input/output) LOGICAL array, dimension (MIN(M,N))
C             On entry, the leading MIN(M,N) elements of this array must
C             be set to .FALSE. unless the i-th columns of U (if JOBU =
C             'U') and V (if JOBV = 'U') already contain a computed base
C             vector of the desired singular subspace of the original
C             matrix, in which case INUL(i) must be set to .TRUE.
C             for 1 <= i <= MIN(M,N).
C             On exit, the indices of the elements of this array with
C             value .TRUE. indicate the indices of the diagonal entries
C             of J which belong to those bidiagonal submatrices whose
C             singular values are all less than or equal to THETA.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             This parameter defines the multiplicity of singular values
C             by considering all singular values within an interval of
C             length TOL as coinciding. TOL is used in checking how many
C             singular values are less than or equal to THETA. Also in
C             computing an appropriate upper bound THETA by a bisection
C             method, TOL is used as a stopping criterion defining the
C             minimum (absolute) subinterval width. TOL is also taken
C             as an absolute tolerance for negligible elements in the
C             QR/QL iterations. If the user sets TOL to be less than or
C             equal to 0, then the tolerance is taken as
C             EPS * MAX(ABS(Q(i)), ABS(E(k))), where EPS is the
C             machine precision (see LAPACK Library routine DLAMCH),
C             i = 1,2,...,MIN(M,N) and k = 1,2,...,MIN(M,N)-1.
C
C     RELTOL  DOUBLE PRECISION
C             This parameter specifies the minimum relative width of an
C             interval. When an interval is narrower than TOL, or than
C             RELTOL times the larger (in magnitude) endpoint, then it
C             is considered to be sufficiently small and bisection has
C             converged. If the user sets RELTOL to be less than
C             BASE * EPS, where BASE is machine radix and EPS is machine
C             precision (see LAPACK Library routine DLAMCH), then the
C             tolerance is taken as BASE * EPS.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(1,6*MIN(M,N)-5), if JOBU = 'I' or 'U', or
C                                               JOBV = 'I' or 'U';
C             LDWORK >= MAX(1,4*MIN(M,N)-3), if JOBU = 'N' and
C                                               JOBV = 'N'.
C
C     Warning Indicator
C
C     IWARN   INTEGER
C             = 0:  no warning;
C             = 1:  if the rank of the bidiagonal matrix J (as specified
C                   by the user) has been lowered because a singular
C                   value of multiplicity larger than 1 was found.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value; this includes values like RANK > MIN(M,N), or
C                   THETA < 0.0 and RANK < 0;
C             = 1:  if the maximum number of QR/QL iteration steps
C                   (30*MIN(M,N)) has been exceeded.
C
C     METHOD
C
C     If the upper bound THETA is not specified by the user, then it is
C     computed by the routine (using a bisection method) such that
C     precisely (MIN(M,N) - RANK) singular values of J are less than or
C     equal to THETA + TOL.
C
C     The method used by the routine (see [1]) then proceeds as follows.
C
C     The unreduced bidiagonal submatrices of J(j), where J(j) is the
C     transformed bidiagonal matrix after the j-th iteration step, are
C     classified into the following three classes:
C
C     - C1 contains the bidiagonal submatrices with all singular values
C       > THETA,
C     - C2 contains the bidiagonal submatrices with all singular values
C       <= THETA and
C     - C3 contains the bidiagonal submatrices with singular values
C       > THETA and also singular values <= THETA.
C
C     If C3 is empty, then the partial diagonalization is complete, and
C     RANK is the sum of the dimensions of the bidiagonal submatrices of
C     C1.
C     Otherwise, QR or QL iterations are performed on each bidiagonal
C     submatrix of C3, until this bidiagonal submatrix has been split
C     into two bidiagonal submatrices. These two submatrices are then
C     classified and the iterations are restarted.
C     If the upper left diagonal element of the bidiagonal submatrix is
C     larger than its lower right diagonal element, then QR iterations
C     are performed, else QL iterations are used. The shift is taken as
C     the smallest diagonal element of the bidiagonal submatrix (in
C     magnitude) unless its value exceeds THETA, in which case it is
C     taken as zero.
C
C     REFERENCES
C
C     [1] Van Huffel, S., Vandewalle, J. and Haegemans, A.
C         An efficient and reliable algorithm for computing the
C         singular subspace of a matrix associated with its smallest
C         singular values.
C         J. Comput. and Appl. Math., 19, pp. 313-330, 1987.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is backward stable.
C
C     To avoid overflow, matrix J is scaled so that its largest element
C     is no greater than  overflow**(1/2) * underflow**(1/4) in absolute
C     value (and not much smaller than that, for maximal accuracy).
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, June 1997.
C     Supersedes Release 2.0 routine MB04QD by S. Van Huffel, Katholieke
C     University Leuven, Belgium.
C
C     REVISIONS
C
C     July 10, 1997. V. Sima.
C     November 25, 1997. V. Sima: Setting INUL(K) = .TRUE. when handling
C                                 2-by-2 submatrix.
C
C     KEYWORDS
C
C     Bidiagonal matrix, orthogonal transformation, singular values.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, TEN, HNDRD
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0,
     $                    HNDRD = 100.0D0 )
      DOUBLE PRECISION  MEIGTH
      PARAMETER         ( MEIGTH = -0.125D0 )
      INTEGER           MAXITR
      PARAMETER         ( MAXITR = 30 )
C     .. Scalar Arguments ..
      CHARACTER         JOBU, JOBV
      INTEGER           INFO, IWARN, LDU, LDV, LDWORK, M, N, RANK
      DOUBLE PRECISION  RELTOL, THETA, TOL
C     .. Array Arguments ..
      LOGICAL           INUL(*)
      DOUBLE PRECISION  DWORK(*), E(*), Q(*), U(LDU,*), V(LDV,*)
C     .. Local Scalars ..
      LOGICAL           LJOBUA, LJOBUI, LJOBVA, LJOBVI, NOC12, QRIT
      INTEGER           I, I1, IASCL, INFO1, ITER, J, K, MAXIT, NUMEIG,
     $                  OLDI, OLDK, P, R
      DOUBLE PRECISION  COSL, COSR, EPS, PIVMIN, RMAX, RMIN, SAFEMN,
     $                  SHIFT, SIGMA, SIGMN, SIGMX, SINL, SINR, SMAX,
     $                  SMLNUM, THETAC, THRESH, TOLABS, TOLREL, X
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           MB03ND
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH, LSAME, MB03ND
C     .. External Subroutines ..
      EXTERNAL          DLASET, DLASV2, DROT, DSCAL, MB02NY, MB03MD,
     $                  MB04YW, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, MAX, MIN, SQRT
C     .. Executable Statements ..
C
      P = MIN( M, N )
      INFO = 0
      IWARN = 0
      LJOBUI = LSAME( JOBU, 'I' )
      LJOBVI = LSAME( JOBV, 'I' )
      LJOBUA = LJOBUI.OR.LSAME( JOBU, 'U' )
      LJOBVA = LJOBVI.OR.LSAME( JOBV, 'U' )
C
C     Test the input scalar arguments.
C
      IF( .NOT.LJOBUA .AND. .NOT.LSAME( JOBU, 'N' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LJOBVA .AND. .NOT.LSAME( JOBV, 'N' ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( RANK.GT.P ) THEN
         INFO = -5
      ELSE IF( RANK.LT.0 .AND. THETA.LT.ZERO ) THEN
         INFO = -6
      ELSE IF( .NOT.LJOBUA .AND. LDU.LT.1 .OR.
     $              LJOBUA .AND. LDU.LT.MAX( 1, M ) ) THEN
         INFO = -10
      ELSE IF( .NOT.LJOBVA .AND. LDV.LT.1 .OR.
     $              LJOBVA .AND. LDV.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF( ( ( LJOBUA.OR.LJOBVA ) .AND. LDWORK.LT.MAX( 1, 6*P-5 ) )
     $ .OR.(.NOT.( LJOBUA.OR.LJOBVA ) .AND. LDWORK.LT.MAX( 1, 4*P-3 ) )
     $       ) THEN
         INFO = -17
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB04YD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( P.EQ.0 ) THEN
         IF ( RANK.GE.0 )
     $      THETA = ZERO
         RANK = 0
         RETURN
      END IF
C
C     Set tolerances and machine parameters.
C
      TOLABS = TOL
      TOLREL = RELTOL
      SMAX = ABS( Q(P) )
C
      DO 20 J = 1, P - 1
         SMAX = MAX( SMAX, ABS( Q(J) ), ABS( E(J) ) )
   20 CONTINUE
C
      SAFEMN = DLAMCH( 'Safe minimum' )
      EPS = DLAMCH( 'Epsilon' )
      IF ( TOLABS.LE.ZERO ) TOLABS = EPS*SMAX
      X = DLAMCH( 'Base' )*EPS
      IF ( TOLREL.LE.X ) TOLREL = X
      THRESH = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )*EPS
      SMLNUM = SAFEMN / EPS
      RMIN = SQRT( SMLNUM )
      RMAX = MIN( ONE / RMIN, ONE / SQRT( SQRT( SAFEMN ) ) )
      THETAC = THETA
C
C     Scale the matrix to allowable range, if necessary, and set PIVMIN,
C     using the squares of Q and E (saved in DWORK).
C
      IASCL = 0
      IF( SMAX.GT.ZERO .AND. SMAX.LT.RMIN ) THEN
         IASCL = 1
         SIGMA = RMIN / SMAX
      ELSE IF( SMAX.GT.RMAX ) THEN
         IASCL = 1
         SIGMA = RMAX / SMAX
      END IF
      IF( IASCL.EQ.1 ) THEN
         CALL DSCAL( P, SIGMA, Q, 1 )
         CALL DSCAL( P-1, SIGMA, E, 1 )
         THETAC = SIGMA*THETA
         TOLABS = SIGMA*TOLABS
      END IF
C
      PIVMIN = Q(P)**2
      DWORK(P) = PIVMIN
C
      DO 40 J = 1, P - 1
         DWORK(J)   = Q(J)**2
         DWORK(P+J) = E(J)**2
         PIVMIN = MAX( PIVMIN, DWORK(J), DWORK(P+J) )
   40 CONTINUE
C
      PIVMIN = MAX( PIVMIN*SAFEMN, SAFEMN )
C
C     Initialize U and/or V to the identity matrix, if needed.
C
      IF ( LJOBUI )
     $   CALL DLASET( 'Full', M, P, ZERO, ONE, U, LDU )
      IF ( LJOBVI )
     $   CALL DLASET( 'Full', N, P, ZERO, ONE, V, LDV )
C
C     Estimate THETA (if not fixed by the user), and set R.
C
      IF ( RANK.GE.0 ) THEN
         J = P - RANK
         CALL MB03MD( P, J, THETAC, Q, E, DWORK(1), DWORK(P+1), PIVMIN,
     $                TOLABS, TOLREL, IWARN, INFO1 )
         THETA = THETAC
         IF ( IASCL.EQ.1 ) THETA = THETA / SIGMA
         IF ( J.LE.0 )
     $      RETURN
         R = P - J
      ELSE
         R = P - MB03ND( P, THETAC, DWORK, DWORK(P+1), PIVMIN, INFO1 )
      END IF
C
      RANK = P
C
      DO 60 I = 1, P
         IF ( INUL(I) ) RANK = RANK - 1
   60 CONTINUE
C
C     From now on K is the smallest known index such that the elements
C     of the bidiagonal matrix J with indices larger than K belong to C1
C     or C2.
C     RANK = P - SUM(dimensions of known bidiagonal matrices of C2).
C
      K = P
      OLDI = -1
      OLDK = -1
      ITER = 0
      MAXIT = MAXITR*P
C     WHILE ( C3 NOT EMPTY ) DO
   80 IF ( RANK.GT.R .AND. K.GT.0 ) THEN
C        WHILE ( K.GT.0 .AND. INUL(K) ) DO
C
C        Search for the rightmost index of a bidiagonal submatrix,
C        not yet classified.
C
  100    IF ( K.GT.0 ) THEN
            IF ( INUL(K) ) THEN
               K = K - 1
               GO TO 100
            END IF
         END IF
C        END WHILE 100
C
         IF ( K.EQ.0 )
     $      RETURN
C
         NOC12 = .TRUE.
C        WHILE ((ITER < MAXIT).AND.(No bidiagonal matrix of C1 or
C                C2 found)) DO
  120    IF ( ( ITER.LT.MAXIT ) .AND. NOC12 ) THEN
C
C           Search for negligible Q(I) or E(I-1) (for I > 1) and find
C           the shift.
C
            I = K
            X = ABS( Q(I) )
            SHIFT = X
C           WHILE ABS( Q(I) ) > TOLABS .AND. ABS( E(I-1) ) > TOLABS ) DO
  140       IF ( I.GT.1 ) THEN
               IF ( ( X.GT.TOLABS ).AND.( ABS( E(I-1) ).GT.TOLABS ) )
     $               THEN
                  I = I - 1
                  X = ABS( Q(I) )
                  IF ( X.LT.SHIFT ) SHIFT = X
                  GO TO 140
               END IF
            END IF
C           END WHILE 140
C
C           Classify the bidiagonal submatrix (of order J) found.
C
            J = K - I + 1
            IF ( ( X.LE.TOLABS ) .OR. ( K.EQ.I ) ) THEN
               NOC12 = .FALSE.
            ELSE
               NUMEIG = MB03ND( J, THETAC, DWORK(I), DWORK(P+I), PIVMIN,
     $                          INFO1 )
               IF ( NUMEIG.GE.J .OR. NUMEIG.LE.0 ) NOC12 = .FALSE.
            END IF
            IF ( NOC12 ) THEN
               IF ( J.EQ.2 ) THEN
C
C                 Handle separately the 2-by-2 submatrix.
C
                  CALL DLASV2( Q(I), E(I), Q(K), SIGMN, SIGMX, SINR,
     $                         COSR, SINL, COSL )
                  Q(I) = SIGMX
                  Q(K) = SIGMN
                  E(I) = ZERO
                  RANK = RANK - 1
                  INUL(K) = .TRUE.
                  NOC12 = .FALSE.
C
C                 Update U and/or V, if needed.
C
                  IF( LJOBUA )
     $               CALL DROT( M, U(1,I), 1, U(1,K), 1, COSL, SINL )
                  IF( LJOBVA )
     $               CALL DROT( N, V(1,I), 1, V(1,K), 1, COSR, SINR )
               ELSE
C
C                 If working on new submatrix, choose QR or
C                 QL iteration.
C
                  IF ( I.NE.OLDI .OR. K.NE.OLDK )
     $               QRIT = ABS( Q(I) ).GE.ABS( Q(K) )
                  OLDI = I
                  IF ( QRIT ) THEN
                     IF ( ABS( E(K-1) ).LE.THRESH*ABS( Q(K) ) )
     $                         E(K-1) = ZERO
                  ELSE
                     IF ( ABS( E(I) ).LE.THRESH*ABS( Q(I) ) )
     $                         E(I) = ZERO
                  END IF
C
                  CALL MB04YW( QRIT, LJOBUA, LJOBVA, M, N, I, K, SHIFT,
     $                         Q, E, U, LDU, V, LDV, DWORK(2*P) )
C
                  IF ( QRIT ) THEN
                     IF ( ABS( E(K-1) ).LE.TOLABS ) E(K-1) = ZERO
                  ELSE
                     IF ( ABS( E(I) ).LE.TOLABS ) E(I) = ZERO
                  END IF
                  DWORK(K) = Q(K)**2
C
                  DO 160 I1 = I, K - 1
                     DWORK(I1)   = Q(I1)**2
                     DWORK(P+I1) = E(I1)**2
  160             CONTINUE
C
                  ITER = ITER + 1
               END IF
            END IF
            GO TO 120
         END IF
C        END WHILE 120
C
         IF ( ITER.GE.MAXIT ) THEN
            INFO = 1
            GO TO 200
         END IF
C
         IF ( X.LE.TOLABS ) THEN
C
C           Split at negligible diagonal element ABS( Q(I) ) <= TOLABS.
C
            CALL MB02NY( LJOBUA, LJOBVA, M, N, I, K, Q, E, U, LDU, V,
     $                   LDV, DWORK(2*P) )
            INUL(I) = .TRUE.
            RANK = RANK - 1
         ELSE
C
C           A negligible superdiagonal element ABS( E(I-1) ) <= TOL
C           has been found, the corresponding bidiagonal submatrix
C           belongs to C1 or C2. Treat this bidiagonal submatrix.
C
            IF ( J.GE.2 ) THEN
               IF ( NUMEIG.EQ.J ) THEN
C
                  DO 180 I1 = I, K
                     INUL(I1) = .TRUE.
  180             CONTINUE
C
                  RANK = RANK - J
                  K = K - J
               ELSE
                  K = I - 1
               END IF
            ELSE
               IF ( X.LE.( THETAC + TOLABS ) ) THEN
                  INUL(I) = .TRUE.
                  RANK = RANK - 1
               END IF
               K = K - 1
            END IF
            OLDK = K
         END IF
         GO TO 80
      END IF
C     END WHILE 80
C
C     If matrix was scaled, then rescale Q and E appropriately.
C
  200 CONTINUE
      IF( IASCL.EQ.1 ) THEN
         CALL DSCAL( P,   ONE / SIGMA, Q, 1 )
         CALL DSCAL( P-1, ONE / SIGMA, E, 1 )
      END IF
C
      RETURN
C *** Last line of MB04YD ***
      END