File: MB04ZD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (486 lines) | stat: -rw-r--r-- 18,023 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
      SUBROUTINE MB04ZD( COMPU, N, A, LDA, QG, LDQG, U, LDU, DWORK, INFO
     $                 )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To transform a Hamiltonian matrix
C
C               ( A   G  )
C           H = (      T )                                           (1)
C               ( Q  -A  )
C
C     into a square-reduced Hamiltonian matrix
C
C                ( A'  G'  )
C           H' = (       T )                                         (2)
C                ( Q' -A'  )
C                                                                 T
C     by an orthogonal symplectic similarity transformation H' = U H U,
C     where
C               (  U1   U2 )
C           U = (          ).                                        (3)
C               ( -U2   U1 )
C                                                              T
C     The square-reduced Hamiltonian matrix satisfies Q'A' - A' Q' = 0,
C     and
C
C           2       T     2     ( A''   G''  )
C         H'  :=  (U  H U)   =  (          T ).
C                               ( 0     A''  )
C
C     In addition, A'' is upper Hessenberg and G'' is skew symmetric.
C     The square roots of the eigenvalues of A'' = A'*A' + G'*Q' are the
C     eigenvalues of H.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COMPU   CHARACTER*1
C             Indicates whether the orthogonal symplectic similarity
C             transformation matrix U in (3) is returned or
C             accumulated into an orthogonal symplectic matrix, or if
C             the transformation matrix is not required, as follows:
C             = 'N':         U is not required;
C             = 'I' or 'F':  on entry, U need not be set;
C                            on exit, U contains the orthogonal
C                            symplectic matrix U from (3);
C             = 'V' or 'A':  the orthogonal symplectic similarity
C                            transformations are accumulated into U;
C                            on input, U must contain an orthogonal
C                            symplectic matrix S;
C                            on exit, U contains S*U with U from (3).
C             See the description of U below for details.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrices A, G, and Q.  N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On input, the leading N-by-N part of this array must
C             contain the upper left block A of the Hamiltonian matrix H
C             in (1).
C             On output, the leading N-by-N part of this array contains
C             the upper left block A' of the square-reduced Hamiltonian
C             matrix H' in (2).
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= MAX(1,N).
C
C     QG      (input/output) DOUBLE PRECISION array, dimension
C             (LDQG,N+1)
C             On input, the leading N-by-N lower triangular part of this
C             array must contain the lower triangle of the lower left
C             symmetric block Q of the Hamiltonian matrix H in (1), and
C             the N-by-N upper triangular part of the submatrix in the
C             columns 2 to N+1 of this array must contain the upper
C             triangle of the upper right symmetric block G of H in (1).
C             So, if i >= j, then Q(i,j) = Q(j,i) is stored in QG(i,j)
C             and G(i,j) = G(j,i) is stored in QG(j,i+1).
C             On output, the leading N-by-N lower triangular part of
C             this array contains the lower triangle of the lower left
C             symmetric block Q', and the N-by-N upper triangular part
C             of the submatrix in the columns 2 to N+1 of this array
C             contains the upper triangle of the upper right symmetric
C             block G' of the square-reduced Hamiltonian matrix H'
C             in (2).
C
C     LDQG    INTEGER
C             The leading dimension of the array QG.  LDQG >= MAX(1,N).
C
C     U       (input/output) DOUBLE PRECISION array, dimension (LDU,2*N)
C             If COMPU = 'N', then this array is not referenced.
C             If COMPU = 'I' or 'F', then the input contents of this
C             array are not specified.  On output, the leading
C             N-by-(2*N) part of this array contains the first N rows
C             of the orthogonal symplectic matrix U in (3).
C             If COMPU = 'V' or 'A', then, on input, the leading
C             N-by-(2*N) part of this array must contain the first N
C             rows of an orthogonal symplectic matrix S. On output, the
C             leading N-by-(2*N) part of this array contains the first N
C             rows of the product S*U where U is the orthogonal
C             symplectic matrix from (3).
C             The storage scheme implied by (3) is used for orthogonal
C             symplectic matrices, i.e., only the first N rows are
C             stored, as they contain all relevant information.
C
C     LDU     INTEGER
C             The leading dimension of the array U.
C             LDU >= MAX(1,N), if COMPU <> 'N';
C             LDU >= 1,        if COMPU =  'N'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (2*N)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, then the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The Hamiltonian matrix H is transformed into a square-reduced
C     Hamiltonian matrix H' using the implicit version of Van Loan's
C     method as proposed in [1,2,3].
C
C     REFERENCES
C
C     [1] Van Loan, C. F.
C         A Symplectic Method for Approximating All the Eigenvalues of
C         a Hamiltonian Matrix.
C         Linear Algebra and its Applications, 61, pp. 233-251, 1984.
C
C     [2] Byers, R.
C         Hamiltonian and Symplectic Algorithms for the Algebraic
C         Riccati Equation.
C         Ph. D. Thesis, Cornell University, Ithaca, NY, January 1983.
C
C     [3] Benner, P., Byers, R., and Barth, E.
C         Fortran 77 Subroutines for Computing the Eigenvalues of
C         Hamiltonian Matrices. I: The Square-Reduced Method.
C         ACM Trans. Math. Software, 26, 1, pp. 49-77, 2000.
C
C     NUMERICAL ASPECTS
C
C     This algorithm requires approximately 20*N**3 flops for
C     transforming H into square-reduced form. If the transformations
C     are required, this adds another 8*N**3 flops. The method is
C     strongly backward stable in the sense that if H' and U are the
C     computed square-reduced Hamiltonian and computed orthogonal
C     symplectic similarity transformation, then there is an orthogonal
C     symplectic matrix T and a Hamiltonian matrix M such that
C
C                  H T  =  T M
C
C        || T - U ||   <=  c1 * eps
C
C        || H' - M ||  <=  c2 * eps * || H ||
C
C     where c1, c2 are modest constants depending on the dimension N and
C     eps is the machine precision.
C
C     Eigenvalues computed by explicitly forming the upper Hessenberg
C     matrix  A'' = A'A' + G'Q', with A', G', and Q' as in (2), and
C     applying the Hessenberg QR iteration to A'' are exactly
C     eigenvalues of a perturbed Hamiltonian matrix H + E,  where
C
C        || E ||  <=  c3 * sqrt(eps) * || H ||,
C
C     and c3 is a modest constant depending on the dimension N and eps
C     is the machine precision.  Moreover, if the norm of H and an
C     eigenvalue lambda are of roughly the same magnitude, the computed
C     eigenvalue is essentially as accurate as the computed eigenvalue
C     from traditional methods.  See [1] or [2].
C
C     CONTRIBUTOR
C
C     P. Benner, Universitaet Bremen, Germany,
C     R. Byers, University of Kansas, Lawrence, USA, and
C     E. Barth, Kalamazoo College, Kalamazoo, USA,
C     Aug. 1998, routine DHASRD.
C     V. Sima, Research Institute for Informatics, Bucharest, Romania,
C     Oct. 1998, SLICOT Library version.
C
C     REVISIONS
C
C     May 2001, A. Varga, German Aeropsce Center, DLR Oberpfaffenhofen.
C     May 2009, V. Sima, Research Institute for Informatics, Bucharest.
C
C     KEYWORDS
C
C     Orthogonal transformation, (square-reduced) Hamiltonian matrix,
C     symplectic similarity transformation.
C
C     ******************************************************************
C
C     .. Parameters ..
C
      DOUBLE PRECISION  ZERO, ONE, TWO
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDQG, LDU, N
      CHARACTER         COMPU
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*), QG(LDQG,*), U(LDU,*)
C     ..
C     .. Local Scalars ..
      DOUBLE PRECISION  COSINE, SINE, TAU, TEMP, X, Y
      INTEGER           J
      LOGICAL           ACCUM, FORGET, FORM
C     ..
C     .. Local Arrays ..
      DOUBLE PRECISION  DUMMY(1), T(2,2)
C     ..
C     .. External Functions ..
      DOUBLE PRECISION  DDOT
      LOGICAL           LSAME
      EXTERNAL          DDOT, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMV, DLARFG, DLARFX, DLARTG,
     $                  DROT, DSYMV, DSYR2, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         MAX
C     ..
C     .. Executable Statements ..
C
      INFO   = 0
      ACCUM  = LSAME( COMPU, 'A' ) .OR. LSAME( COMPU, 'V' )
      FORM   = LSAME( COMPU, 'F' ) .OR. LSAME( COMPU, 'I' )
      FORGET = LSAME( COMPU, 'N' )
C
      IF ( .NOT.ACCUM .AND. .NOT.FORM .AND. .NOT.FORGET ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LDQG.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDU.LT.1 .OR. ( .NOT.FORGET .AND. LDU.LT.MAX( 1, N ) ) )
     $      THEN
         INFO = -8
      END IF
C
      IF ( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB04ZD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 )
     $   RETURN
C
C     Transform to square-reduced form.
C
      DO 10 J = 1, N - 1
C                         T
C        DWORK <- (Q*A - A *Q)(J+1:N,J).
C
         CALL DCOPY( J-1, QG(J,1), LDQG, DWORK(N+1), 1 )
         CALL DCOPY( N-J+1, QG(J,J), 1, DWORK(N+J), 1 )
         CALL DGEMV( 'Transpose', N, N-J, -ONE, A(1,J+1), LDA,
     $               DWORK(N+1), 1, ZERO, DWORK(J+1), 1 )
         CALL DGEMV( 'NoTranspose', N-J, J, ONE, QG(J+1,1), LDQG,
     $               A(1,J), 1, ONE, DWORK(J+1), 1 )
         CALL DSYMV( 'Lower', N-J, ONE, QG(J+1,J+1), LDQG, A(J+1,J), 1,
     $               ONE, DWORK(J+1), 1 )
C
C        Symplectic reflection to zero (H*H)((N+J+2):2N,J).
C
         CALL DLARFG( N-J, DWORK(J+1), DWORK(J+2), 1, TAU )
         Y = DWORK(J+1)
         DWORK(J+1) = ONE
C
         CALL DLARFX( 'Left', N-J, N, DWORK(J+1), TAU, A(J+1,1), LDA,
     $                DWORK(N+1) )
         CALL DLARFX( 'Right', N, N-J, DWORK(J+1), TAU, A(1,J+1), LDA,
     $                DWORK(N+1) )
C
         CALL DLARFX( 'Left', N-J, J, DWORK(J+1), TAU, QG(J+1,1), LDQG,
     $                DWORK(N+1) )
         CALL DSYMV( 'Lower', N-J, TAU, QG(J+1,J+1), LDQG, DWORK(J+1),
     $               1, ZERO, DWORK(N+J+1), 1 )
         CALL DAXPY( N-J, -TAU*DDOT( N-J, DWORK(N+J+1), 1, DWORK(J+1),
     $               1 )/TWO, DWORK(J+1), 1, DWORK(N+J+1), 1 )
         CALL DSYR2( 'Lower', N-J, -ONE, DWORK(J+1), 1, DWORK(N+J+1), 1,
     $               QG(J+1,J+1), LDQG )
C
         CALL DLARFX( 'Right', J, N-J, DWORK(J+1), TAU, QG(1,J+2), LDQG,
     $                DWORK(N+1) )
         CALL DSYMV( 'Upper', N-J, TAU, QG(J+1,J+2), LDQG, DWORK(J+1),
     $               1, ZERO, DWORK(N+J+1), 1 )
         CALL DAXPY( N-J, -TAU*DDOT( N-J, DWORK(N+J+1), 1, DWORK(J+1),
     $               1 )/TWO, DWORK(J+1), 1, DWORK(N+J+1), 1 )
         CALL DSYR2( 'Upper', N-J, -ONE, DWORK(J+1), 1, DWORK(N+J+1), 1,
     $               QG(J+1,J+2), LDQG )
C
         IF ( FORM ) THEN
C
C           Save reflection.
C
            CALL DCOPY( N-J, DWORK(J+1), 1, U(J+1,J), 1 )
            U(J+1,J) = TAU
C
         ELSE IF ( ACCUM ) THEN
C
C           Accumulate reflection.
C
            CALL DLARFX( 'Right', N, N-J, DWORK(J+1), TAU, U(1,J+1),
     $                   LDU, DWORK(N+1) )
            CALL DLARFX( 'Right', N, N-J, DWORK(J+1), TAU, U(1,N+J+1),
     $                   LDU, DWORK(N+1) )
         END IF
C
C        (X,Y) := ((J+1,J),(N+J+1,J)) component of H*H.
C
         X = DDOT( J, QG(1,J+2), 1, QG(J,1), LDQG ) +
     $       DDOT( N-J, QG(J+1,J+2), LDQG, QG(J+1,J), 1 ) +
     $       DDOT( N, A(J+1,1), LDA, A(1,J), 1 )
C
C        Symplectic rotation to zero (H*H)(N+J+1,J).
C
         CALL DLARTG( X, Y, COSINE, SINE, TEMP )
C
         CALL DROT( J, A(J+1,1), LDA, QG(J+1,1), LDQG, COSINE, SINE )
         CALL DROT( J, A(1,J+1), 1, QG(1,J+2), 1, COSINE, SINE )
         IF( J.LT.N-1 ) THEN
            CALL DROT( N-J-1, A(J+1,J+2), LDA, QG(J+2,J+1), 1,
     $                 COSINE, SINE )
            CALL DROT( N-J-1, A(J+2,J+1), 1, QG(J+1,J+3), LDQG,
     $                 COSINE, SINE )
         END IF
C
         T(1,1) = A(J+1,J+1)
         T(1,2) = QG(J+1,J+2)
         T(2,1) = QG(J+1,J+1)
         T(2,2) = -T(1,1)
         CALL DROT( 2, T(1,1), 1, T(1,2), 1, COSINE, SINE )
         CALL DROT( 2, T(1,1), 2, T(2,1), 2, COSINE, SINE )
         A(J+1,J+1)  = T(1,1)
         QG(J+1,J+2) = T(1,2)
         QG(J+1,J+1) = T(2,1)
C
         IF ( FORM ) THEN
C
C           Save rotation.
C
            U(J,J)   = COSINE
            U(J,N+J) = SINE
C
         ELSE IF ( ACCUM ) THEN
C
C           Accumulate rotation.
C
            CALL DROT( N, U(1,J+1), 1, U(1,N+J+1), 1, COSINE, SINE )
         END IF
C
C        DWORK := (A*A  + G*Q)(J+1:N,J).
C
         CALL DGEMV( 'NoTranspose', N-J, N, ONE, A(J+1,1), LDA, A(1,J),
     $               1, ZERO, DWORK(J+1), 1 )
         CALL DGEMV( 'Transpose', J, N-J, ONE, QG(1,J+2), LDQG, QG(J,1),
     $               LDQG, ONE, DWORK(J+1), 1 )
         CALL DSYMV( 'Upper', N-J, ONE, QG(J+1,J+2), LDQG, QG(J+1,J), 1,
     $               ONE, DWORK(J+1), 1 )
C
C        Symplectic reflection to zero (H*H)(J+2:N,J).
C
         CALL DLARFG( N-J, DWORK(J+1), DWORK(J+2), 1, TAU )
         DWORK(J+1) = ONE
C
         CALL DLARFX( 'Left', N-J, N, DWORK(J+1), TAU, A(J+1,1), LDA,
     $                DWORK(N+1) )
         CALL DLARFX( 'Right', N, N-J, DWORK(J+1), TAU, A(1,J+1), LDA,
     $                DWORK(N+1) )
C
         CALL DLARFX( 'Left', N-J, J, DWORK(J+1), TAU, QG(J+1,1), LDQG,
     $                DWORK(N+1) )
         CALL DSYMV( 'Lower', N-J, TAU, QG(J+1,J+1), LDQG, DWORK(J+1),
     $               1, ZERO, DWORK(N+J+1), 1 )
         CALL DAXPY( N-J, -TAU*DDOT( N-J, DWORK(N+J+1), 1, DWORK(J+1),
     $               1 )/TWO, DWORK(J+1), 1, DWORK(N+J+1), 1 )
         CALL DSYR2( 'Lower', N-J, -ONE, DWORK(J+1), 1, DWORK(N+J+1), 1,
     $               QG(J+1,J+1), LDQG )
C
         CALL DLARFX( 'Right', J, N-J, DWORK(J+1), TAU, QG(1,J+2), LDQG,
     $                DWORK(N+1) )
         CALL DSYMV( 'Upper', N-J, TAU, QG(J+1,J+2), LDQG, DWORK(J+1),
     $               1, ZERO, DWORK(N+J+1), 1 )
         CALL DAXPY( N-J, -TAU*DDOT( N-J, DWORK(N+J+1), 1, DWORK(J+1),
     $               1 )/TWO, DWORK(J+1), 1, DWORK(N+J+1), 1 )
         CALL DSYR2( 'Upper', N-J, -ONE, DWORK(J+1), 1, DWORK(N+J+1), 1,
     $               QG(J+1,J+2), LDQG )
C
         IF ( FORM ) THEN
C
C           Save reflection.
C
            CALL DCOPY( N-J, DWORK(J+1), 1, U(J+1,N+J), 1 )
            U(J+1,N+J) = TAU
C
         ELSE IF ( ACCUM ) THEN
C
C           Accumulate reflection.
C
            CALL DLARFX( 'Right', N, N-J, DWORK(J+1), TAU, U(1,J+1),
     $                   LDU, DWORK(N+1) )
            CALL DLARFX( 'Right', N, N-J, DWORK(J+1), TAU, U(1,N+J+1),
     $                   LDU, DWORK(N+1) )
         END IF
C
   10 CONTINUE
C
      IF ( FORM ) THEN
         DUMMY(1) = ZERO
C
C        Form S by accumulating transformations.
C
         DO 20 J = N - 1, 1, -1
C
C           Initialize (J+1)st column of S.
C
            CALL DCOPY( N, DUMMY, 0, U(1,J+1), 1 )
            U(J+1,J+1) = ONE
            CALL DCOPY( N, DUMMY, 0, U(1,N+J+1), 1 )
C
C           Second reflection.
C
            TAU = U(J+1,N+J)
            U(J+1,N+J) = ONE
            CALL DLARFX( 'Left', N-J, N-J, U(J+1,N+J), TAU,
     $                   U(J+1,J+1), LDU, DWORK(N+1) )
            CALL DLARFX( 'Left', N-J, N-J, U(J+1,N+J), TAU,
     $                   U(J+1,N+J+1), LDU, DWORK(N+1) )
C
C           Rotation.
C
            CALL DROT( N-J, U(J+1,J+1), LDU, U(J+1,N+J+1), LDU,
     $                 U(J,J), U(J,N+J) )
C
C           First reflection.
C
            TAU = U(J+1,J)
            U(J+1,J) = ONE
            CALL DLARFX( 'Left', N-J, N-J, U(J+1,J), TAU, U(J+1,J+1),
     $                   LDU, DWORK(N+1) )
            CALL DLARFX( 'Left', N-J, N-J, U(J+1,J), TAU,
     $                   U(J+1,N+J+1), LDU, DWORK(N+1) )
   20    CONTINUE
C
C        The first column is the first column of identity.
C
         CALL DCOPY( N, DUMMY, 0, U, 1 )
         U(1,1) = ONE
         CALL DCOPY( N, DUMMY, 0, U(1,N+1), 1 )
      END IF
C
      RETURN
C     *** Last line of MB04ZD ***
      END