File: MB05MY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (327 lines) | stat: -rw-r--r-- 11,361 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
      SUBROUTINE MB05MY( BALANC, N, A, LDA, WR, WI, R, LDR, Q, LDQ,
     $                   DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute, for an N-by-N real nonsymmetric matrix A, the
C     orthogonal matrix Q reducing it to real Schur form T, the
C     eigenvalues, and the right eigenvectors of T.
C
C     The right eigenvector r(j) of T satisfies
C                      T * r(j) = lambda(j) * r(j)
C     where lambda(j) is its eigenvalue.
C
C     The matrix of right eigenvectors R is upper triangular, by
C     construction.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     BALANC  CHARACTER*1
C             Indicates how the input matrix should be diagonally scaled
C             to improve the conditioning of its eigenvalues as follows:
C             = 'N':  Do not diagonally scale;
C             = 'S':  Diagonally scale the matrix, i.e. replace A by
C                     D*A*D**(-1), where D is a diagonal matrix chosen
C                     to make the rows and columns of A more equal in
C                     norm. Do not permute.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the given matrix A.
C             On exit, the leading N-by-N upper quasi-triangular part of
C             this array contains the real Schur canonical form of A.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= max(1,N).
C
C     WR      (output) DOUBLE PRECISION array, dimension (N)
C     WI      (output) DOUBLE PRECISION array, dimension (N)
C             WR and WI contain the real and imaginary parts,
C             respectively, of the computed eigenvalues. Complex
C             conjugate pairs of eigenvalues appear consecutively
C             with the eigenvalue having the positive imaginary part
C             first.
C
C     R       (output) DOUBLE PRECISION array, dimension (LDR,N)
C             The leading N-by-N upper triangular part of this array
C             contains the matrix of right eigenvectors R, in the same
C             order as their eigenvalues. The real and imaginary parts
C             of a complex eigenvector corresponding to an eigenvalue
C             with positive imaginary part are stored in consecutive
C             columns. (The corresponding conjugate eigenvector is not
C             stored.) The eigenvectors are not backward transformed
C             for balancing (when BALANC = 'S').
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= max(1,N).
C
C     Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
C             The leading N-by-N part of this array contains the
C             orthogonal matrix Q which has reduced A to real Schur
C             form.
C
C     LDQ     INTEGER
C             The leading dimension of array Q.  LDQ >= MAX(1,N).
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK.
C             If BALANC = 'S', DWORK(2),...,DWORK(N+1) return the
C             scaling factors used for balancing.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= max(1,4*N).
C             For good performance, LDWORK must generally be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, the QR algorithm failed to compute all
C                   the eigenvalues, and no eigenvectors have been
C                   computed; elements i+1:N of WR and WI contain
C                   eigenvalues which have converged.
C
C     METHOD
C
C     This routine uses the QR algorithm to obtain the real Schur form
C     T of matrix A. Then, the right eigenvectors of T are computed,
C     but they are not backtransformed into the eigenvectors of A.
C     MB05MY is a modification of the LAPACK driver routine DGEEV.
C
C     REFERENCES
C
C     [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C         Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C         Ostrouchov, S., and Sorensen, D.
C         LAPACK Users' Guide: Second Edition.
C         SIAM, Philadelphia, 1995.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Apr. 1997.
C     Supersedes Release 2.0 routine MB05AY.
C
C     REVISIONS
C
C     V. Sima, April 25, 2003, Feb. 15, 2004.
C
C     KEYWORDS
C
C     Eigenvalue, eigenvector decomposition, real Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         BALANC
      INTEGER           INFO, LDA, LDQ, LDR, LDWORK, N
C     ..
C     .. Array Arguments ..
      DOUBLE PRECISION  A( LDA, * ), DWORK( * ), Q( LDQ, * ),
     $                  R( LDR, * ), WI( * ), WR( * )
C     ..
C     .. Local Scalars ..
      LOGICAL           SCALE, SCALEA
      INTEGER           HSDWOR, IBAL, IERR, IHI, ILO, ITAU, JWORK, K,
     $                  MAXB, MAXWRK, MINWRK, NOUT
      DOUBLE PRECISION  ANRM, BIGNUM, CSCALE, EPS, SMLNUM
C     ..
C     .. Local Arrays ..
      LOGICAL           SELECT( 1 )
      DOUBLE PRECISION  DUM( 1 )
C     ..
C     .. External Functions ..
      LOGICAL           LSAME
      INTEGER           ILAENV
      DOUBLE PRECISION  DLAMCH, DLANGE
      EXTERNAL          DLAMCH, DLANGE, ILAENV, LSAME
C     ..
C     .. External Subroutines ..
      EXTERNAL          DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY, DLASCL,
     $                  DORGHR, DTREVC, XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN, SQRT
C     ..
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO  = 0
      SCALE = LSAME( BALANC, 'S' )
      IF( .NOT.( LSAME( BALANC, 'N' ) .OR. SCALE ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LDR.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -10
      END IF
C
C     Compute workspace.
C      (Note: Comments in the code beginning "Workspace:" describe the
C       minimal amount of workspace needed at that point in the code,
C       as well as the preferred amount for good performance.
C       NB refers to the optimal block size for the immediately
C       following subroutine, as returned by ILAENV.
C       HSDWOR refers to the workspace preferred by DHSEQR, as
C       calculated below. HSDWOR is computed assuming ILO=1 and IHI=N,
C       the worst case.)
C
      MINWRK = 1
      IF( INFO.EQ.0 .AND. LDWORK.GE.1 ) THEN
         MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
         MINWRK = MAX( 1, 4*N )
         MAXWRK = MAX( MAXWRK, 2*N+( N-1 )*
     $            ILAENV( 1, 'DORGHR', ' ', N, 1, N, -1 ) )
         MAXB = MAX( ILAENV( 8, 'DHSEQR', 'SV', N, 1, N, -1 ), 2 )
         K = MIN( MAXB, N, MAX( 2, ILAENV( 4, 'DHSEQR', 'SV', N, 1,
     $       N, -1 ) ) )
         HSDWOR = MAX( K*( K+2 ), 2*N )
         MAXWRK = MAX( MAXWRK, N+1, N+HSDWOR )
         MAXWRK = MAX( MAXWRK, 4*N )
         DWORK( 1 ) = MAXWRK
      END IF
      IF( LDWORK.LT.MINWRK ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MB05MY', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( N.EQ.0 )
     $   RETURN
C
C     Get machine constants.
C
      EPS = DLAMCH( 'P' )
      SMLNUM = DLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL DLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
C
C     Scale A if max element outside range [SMLNUM,BIGNUM].
C
      ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
      SCALEA = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = SMLNUM
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = BIGNUM
      END IF
      IF( SCALEA )
     $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
C
C     Balance the matrix, if requested. (Permutation is not possible.)
C     (Workspace: need N)
C
      IBAL = 1
      CALL DGEBAL( BALANC, N, A, LDA, ILO, IHI, DWORK( IBAL ), IERR )
C
C     Reduce to upper Hessenberg form.
C     (Workspace: need 3*N, prefer 2*N+N*NB)
C
      ITAU = IBAL + N
      JWORK = ITAU + N
      CALL DGEHRD( N, ILO, IHI, A, LDA, DWORK( ITAU ), DWORK( JWORK ),
     $             LDWORK-JWORK+1, IERR )
C
C     Compute right eigenvectors of T.
C     Copy Householder vectors to Q.
C
      CALL DLACPY( 'Lower', N, N, A, LDA, Q, LDQ )
C
C     Generate orthogonal matrix in Q.
C     (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
C
      CALL DORGHR( N, ILO, IHI, Q, LDQ, DWORK( ITAU ), DWORK( JWORK ),
     $             LDWORK-JWORK+1, IERR )
C
C     Perform QR iteration, accumulating Schur vectors in Q.
C     (Workspace: need N+1, prefer N+HSDWOR (see comments) )
C
      JWORK = ITAU
      CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, Q, LDQ,
     $             DWORK( JWORK ), LDWORK-JWORK+1, INFO )
C
C     If INFO > 0 from DHSEQR, then quit.
C
      IF( INFO.GT.0 )
     $   GO TO 10
C
C     Compute right eigenvectors of T in R.
C     (Workspace: need 4*N)
C
      CALL DTREVC( 'Right', 'All', SELECT, N, A, LDA, DUM, 1, R, LDR, N,
     $             NOUT, DWORK( JWORK ), IERR )
C
C     Undo scaling if necessary.
C
   10 CONTINUE
      IF( SCALEA ) THEN
         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
     $                MAX( N-INFO, 1 ), IERR )
         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
     $                MAX( N-INFO, 1 ), IERR )
         IF( INFO.GT.0 ) THEN
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
     $                   IERR )
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
     $                   IERR )
         END IF
      END IF
C
      IF ( SCALE ) THEN
         DO 20 K = N, 1, -1
            DWORK( K+1 ) = DWORK( K )
   20    CONTINUE
      END IF
      DWORK( 1 ) = MAXWRK
C
      RETURN
C *** Last line of MB05MY ***
      END