1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
SUBROUTINE MB05ND( N, DELTA, A, LDA, EX, LDEX, EXINT, LDEXIN,
$ TOL, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute
C
C (a) F(delta) = exp(A*delta) and
C
C (b) H(delta) = Int[F(s) ds] from s = 0 to s = delta,
C
C where A is a real N-by-N matrix and delta is a scalar value.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C DELTA (input) DOUBLE PRECISION
C The scalar value delta of the problem.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C matrix A of the problem. (Array A need not be set if
C DELTA = 0.)
C
C LDA INTEGER
C The leading dimension of array A. LDA >= max(1,N).
C
C EX (output) DOUBLE PRECISION array, dimension (LDEX,N)
C The leading N-by-N part of this array contains an
C approximation to F(delta).
C
C LDEX INTEGER
C The leading dimension of array EX. LDEX >= MAX(1,N).
C
C EXINT (output) DOUBLE PRECISION array, dimension (LDEXIN,N)
C The leading N-by-N part of this array contains an
C approximation to H(delta).
C
C LDEXIN INTEGER
C The leading dimension of array EXINT. LDEXIN >= MAX(1,N).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used in determining the order of the
C Pade approximation to H(t), where t is a scale factor
C determined by the routine. A reasonable value for TOL may
C be SQRT(EPS), where EPS is the machine precision (see
C LAPACK Library routine DLAMCH).
C
C Workspace
C
C IWORK INTEGER array, dimension (N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= MAX(1,N*(N+1)).
C For optimum performance LDWORK should be larger (2*N*N).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, the (i,i) element of the denominator of
C the Pade approximation is zero, so the denominator
C is exactly singular;
C = N+1: if DELTA = (delta * frobenius norm of matrix A) is
C probably too large to permit meaningful computation.
C That is, DELTA > SQRT(BIG), where BIG is a
C representable number near the overflow threshold of
C the machine (see LAPACK Library Routine DLAMCH).
C
C METHOD
C
C This routine uses a Pade approximation to H(t) for some small
C value of t (where 0 < t <= delta) and then calculates F(t) from
C H(t). Finally, the results are re-scaled to give F(delta) and
C H(delta). For a detailed description of the implementation of this
C algorithm see [1].
C
C REFERENCES
C
C [1] Benson, C.J.
C The numerical evaluation of the matrix exponential and its
C integral.
C Report 82/03, Control Systems Research Group,
C School of Electronic Engineering and Computer
C Science, Kingston Polytechnic, January 1982.
C
C [2] Ward, R.C.
C Numerical computation of the matrix exponential with accuracy
C estimate.
C SIAM J. Numer. Anal., 14, pp. 600-610, 1977.
C
C [3] Moler, C.B. and Van Loan, C.F.
C Nineteen Dubious Ways to Compute the Exponential of a Matrix.
C SIAM Rev., 20, pp. 801-836, 1978.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, May 1997.
C Supersedes Release 2.0 routine MB05BD by C.J. Benson, Kingston
C Polytechnic, January 1982.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Continuous-time system, matrix algebra, matrix exponential,
C matrix operations, Pade approximation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE, ONE64, THREE, FOUR8
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,
$ ONE64 = 1.64D0, THREE = 3.0D0, FOUR8 = 4.8D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDEX, LDEXIN, LDWORK, N
DOUBLE PRECISION DELTA, TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), DWORK(*), EX(LDEX,*), EXINT(LDEXIN,*)
C .. Local Scalars ..
INTEGER I, I2IQ1, IJ, IQ, J, JSCAL, KK, L, NN
DOUBLE PRECISION COEFFD, COEFFN, DELSC, EPS, ERR, F2IQ1,
$ FNORM, FNORM2, QMAX, SMALL
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMM, DGEMV, DGESV, DLACPY,
$ DLASET, DSCAL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, EXP, MAX, MOD, SQRT
C .. Executable Statements ..
C
INFO = 0
NN = N*N
C
C Test the input scalar arguments.
C
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSE IF( LDEX.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDEXIN.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDWORK.LT.MAX( 1, NN + N ) ) THEN
INFO = -12
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB05ND', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
DWORK(1) = ONE
IF ( N.EQ.0 )
$ RETURN
C
CALL DLASET( 'Full', N, N, ZERO, ZERO, EX, LDEX )
CALL DLASET( 'Full', N, N, ZERO, ZERO, EXINT, LDEXIN )
C
IF ( DELTA.EQ.ZERO ) THEN
CALL DLASET( 'Upper', N, N, ZERO, ONE, EX, LDEX )
RETURN
END IF
C
IF ( N.EQ.1 ) THEN
EX(1,1) = EXP( DELTA*A(1,1) )
IF ( A(1,1).EQ.ZERO ) THEN
EXINT(1,1) = DELTA
ELSE
EXINT(1,1) = ( ( ONE/A(1,1) )*EX(1,1) ) - ( ONE/A(1,1) )
END IF
RETURN
END IF
C
C Set some machine parameters.
C
EPS = DLAMCH( 'Epsilon' )
SMALL = DLAMCH( 'Safe minimum' )/EPS
C
C First calculate the Frobenius norm of A, and the scaling factor.
C
FNORM = DELTA*DLANGE( 'Frobenius', N, N, A, LDA, DWORK )
C
IF ( FNORM.GT.SQRT( ONE/SMALL ) ) THEN
INFO = N + 1
RETURN
END IF
C
JSCAL = 0
DELSC = DELTA
C WHILE ( FNORM >= HALF ) DO
20 CONTINUE
IF ( FNORM.GE.HALF ) THEN
JSCAL = JSCAL + 1
DELSC = DELSC*HALF
FNORM = FNORM*HALF
GO TO 20
END IF
C END WHILE 20
C
C Calculate the order of the Pade approximation needed to satisfy
C the requested relative error TOL.
C
FNORM2 = FNORM**2
IQ = 1
QMAX = FNORM/THREE
ERR = DELTA/DELSC*FNORM2**2/FOUR8
C WHILE ( ERR > TOL*( 2*IQ + 3 - FNORM )/1.64 and QMAX >= EPS ) DO
40 CONTINUE
IF ( ERR.GT.TOL*( DBLE( 2*IQ + 3 ) - FNORM )/ONE64 ) THEN
IQ = IQ + 1
QMAX = QMAX*DBLE( IQ + 1 )*FNORM/DBLE( 2*IQ*( 2*IQ + 1 ) )
IF ( QMAX.GE.EPS ) THEN
ERR = ERR*FNORM2*DBLE( 2*IQ + 5 )/DBLE( ( 2*IQ + 3 )**2
$ *( 2*IQ + 4 ) )
GO TO 40
END IF
END IF
C END WHILE 40
C
C Initialise DWORK (to contain succesive powers of A),
C EXINT (to contain the numerator) and
C EX (to contain the denominator).
C
I2IQ1 = 2*IQ + 1
F2IQ1 = DBLE( I2IQ1 )
COEFFD = -DBLE( IQ )/F2IQ1
COEFFN = HALF/F2IQ1
IJ = 1
C
DO 80 J = 1, N
C
DO 60 I = 1, N
DWORK(IJ) = DELSC*A(I,J)
EXINT(I,J) = COEFFN*DWORK(IJ)
EX(I,J) = COEFFD*DWORK(IJ)
IJ = IJ + 1
60 CONTINUE
C
EXINT(J,J) = EXINT(J,J) + ONE
EX(J,J) = EX(J,J) + ONE
80 CONTINUE
C
DO 140 KK = 2, IQ
C
C Calculate the next power of A*DELSC, and update the numerator
C and denominator.
C
COEFFD = -COEFFD*DBLE( IQ+1-KK )/DBLE( KK*( I2IQ1+1-KK ) )
IF ( MOD( KK, 2 ).EQ.0 ) THEN
COEFFN = COEFFD/DBLE( KK + 1 )
ELSE
COEFFN = -COEFFD/DBLE( I2IQ1 - KK )
END IF
IJ = 1
C
IF ( LDWORK.GE.2*NN ) THEN
C
C Enough space for a BLAS 3 calculation.
C
CALL DGEMM( 'No transpose', 'No transpose', N, N, N, DELSC,
$ A, LDA, DWORK, N, ZERO, DWORK(NN+1), N )
CALL DCOPY( NN, DWORK(NN+1), 1, DWORK, 1 )
C
DO 100 J = 1, N
CALL DAXPY( N, COEFFN, DWORK(IJ), 1, EXINT(1,J), 1 )
CALL DAXPY( N, COEFFD, DWORK(IJ), 1, EX(1,J), 1 )
IJ = IJ + N
100 CONTINUE
C
ELSE
C
C Not enough space for a BLAS 3 calculation. Use BLAS 2.
C
DO 120 J = 1, N
CALL DGEMV( 'No transpose', N, N, ONE, A, LDA, DWORK(IJ),
$ 1, ZERO, DWORK(NN+1), 1 )
CALL DCOPY( N, DWORK(NN+1), 1, DWORK(IJ), 1 )
CALL DSCAL( N, DELSC, DWORK(IJ), 1 )
CALL DAXPY( N, COEFFN, DWORK(IJ), 1, EXINT(1,J), 1 )
CALL DAXPY( N, COEFFD, DWORK(IJ), 1, EX(1,J), 1 )
IJ = IJ + N
120 CONTINUE
C
END IF
140 CONTINUE
C
C We now have numerator in EXINT, denominator in EX.
C
C Solve the set of N systems of linear equations for the columns of
C EXINT using the LU factorization of EX.
C
CALL DGESV( N, N, EX, LDEX, IWORK, EXINT, LDEXIN, INFO )
IF ( INFO.NE.0 )
$ RETURN
C
C Now we can form EX from EXINT using the formula:
C EX = EXINT * A + I
C
DO 160 J = 1, N
CALL DSCAL( N, DELSC, EXINT(1,J), 1 )
160 CONTINUE
C
CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE, EXINT,
$ LDEXIN, A, LDA, ZERO, EX, LDEX )
C
DO 180 J = 1, N
EX(J,J) = EX(J,J) + ONE
180 CONTINUE
C
C EX and EXINT have been evaluated at DELSC, so the results
C must be re-scaled to give the function values at DELTA.
C
C EXINT(2t) = EXINT(t) * ^ EX(t) + I [
C EX(2t) = EX(t) * EX(t)
C
C DWORK is used to accumulate products.
C
DO 200 L = 1, JSCAL
CALL DLACPY( 'Full', N, N, EXINT, LDEXIN, DWORK, N )
CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE,
$ DWORK, N, EX, LDEX, ONE, EXINT, LDEXIN )
CALL DLACPY( 'Full', N, N, EX, LDEX, DWORK, N )
CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE,
$ DWORK, N, DWORK, N, ZERO, EX, LDEX )
200 CONTINUE
C
DWORK(1) = 2*NN
RETURN
C *** Last line of MB05ND ***
END
|