File: MB05ND.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (377 lines) | stat: -rw-r--r-- 12,047 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
      SUBROUTINE MB05ND( N, DELTA, A, LDA, EX, LDEX, EXINT, LDEXIN,
     $                   TOL, IWORK, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute
C
C     (a)    F(delta) =  exp(A*delta) and
C
C     (b)    H(delta) =  Int[F(s) ds] from s = 0 to s = delta,
C
C     where A is a real N-by-N matrix and delta is a scalar value.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     DELTA   (input) DOUBLE PRECISION
C             The scalar value delta of the problem.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
C             The leading N-by-N part of this array must contain the
C             matrix A of the problem. (Array A need not be set if
C             DELTA = 0.)
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= max(1,N).
C
C     EX      (output) DOUBLE PRECISION array, dimension (LDEX,N)
C             The leading N-by-N part of this array contains an
C             approximation to F(delta).
C
C     LDEX    INTEGER
C             The leading dimension of array EX.  LDEX >= MAX(1,N).
C
C     EXINT   (output) DOUBLE PRECISION array, dimension (LDEXIN,N)
C             The leading N-by-N part of this array contains an
C             approximation to H(delta).
C
C     LDEXIN  INTEGER
C             The leading dimension of array EXINT.  LDEXIN >= MAX(1,N).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in determining the order of the
C             Pade approximation to H(t), where t is a scale factor
C             determined by the routine. A reasonable value for TOL may
C             be SQRT(EPS), where EPS is the machine precision (see
C             LAPACK Library routine DLAMCH).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (N)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK. LDWORK >= MAX(1,N*(N+1)).
C             For optimum performance LDWORK should be larger (2*N*N).
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, the (i,i) element of the denominator of
C                   the Pade approximation is zero, so the denominator
C                   is exactly singular;
C             = N+1:  if DELTA = (delta * frobenius norm of matrix A) is
C                   probably too large to permit meaningful computation.
C                   That is, DELTA > SQRT(BIG), where BIG is a
C                   representable number near the overflow threshold of
C                   the machine (see LAPACK Library Routine DLAMCH).
C
C     METHOD
C
C     This routine uses a Pade approximation to H(t) for some small
C     value of t (where 0 < t <= delta) and then calculates F(t) from
C     H(t). Finally, the results are re-scaled to give F(delta) and
C     H(delta). For a detailed description of the implementation of this
C     algorithm see [1].
C
C     REFERENCES
C
C     [1] Benson, C.J.
C         The numerical evaluation of the matrix exponential and its
C         integral.
C         Report 82/03, Control Systems Research Group,
C         School of Electronic Engineering and Computer
C         Science, Kingston Polytechnic, January 1982.
C
C     [2] Ward, R.C.
C         Numerical computation of the matrix exponential with accuracy
C         estimate.
C         SIAM J. Numer. Anal., 14, pp. 600-610, 1977.
C
C     [3] Moler, C.B. and Van Loan, C.F.
C         Nineteen Dubious Ways to Compute the Exponential of a Matrix.
C         SIAM Rev., 20, pp. 801-836, 1978.
C
C     NUMERICAL ASPECTS
C                               3
C     The algorithm requires 0(N ) operations.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, May 1997.
C     Supersedes Release 2.0 routine MB05BD by C.J. Benson, Kingston
C     Polytechnic, January 1982.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Continuous-time system, matrix algebra, matrix exponential,
C     matrix operations, Pade approximation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, HALF, ONE, ONE64, THREE, FOUR8
      PARAMETER         ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,
     $                    ONE64 = 1.64D0, THREE = 3.0D0, FOUR8 = 4.8D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDEX, LDEXIN, LDWORK, N
      DOUBLE PRECISION  DELTA, TOL
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), DWORK(*), EX(LDEX,*), EXINT(LDEXIN,*)
C     .. Local Scalars ..
      INTEGER           I, I2IQ1, IJ, IQ, J, JSCAL, KK, L, NN
      DOUBLE PRECISION  COEFFD, COEFFN, DELSC, EPS, ERR, F2IQ1,
     $                  FNORM, FNORM2, QMAX, SMALL
C     .. External Functions ..
      LOGICAL           LSAME
      DOUBLE PRECISION  DLAMCH, DLANGE
      EXTERNAL          DLAMCH, DLANGE, LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DGEMM, DGEMV, DGESV, DLACPY,
     $                  DLASET, DSCAL, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, EXP, MAX, MOD, SQRT
C     .. Executable Statements ..
C
      INFO = 0
      NN = N*N
C
C     Test the input scalar arguments.
C
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LDEX.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDEXIN.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LDWORK.LT.MAX( 1, NN + N ) ) THEN
         INFO = -12
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MB05ND', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      DWORK(1) = ONE
      IF ( N.EQ.0 )
     $   RETURN
C
      CALL DLASET( 'Full', N, N, ZERO, ZERO, EX, LDEX )
      CALL DLASET( 'Full', N, N, ZERO, ZERO, EXINT, LDEXIN )
C
      IF ( DELTA.EQ.ZERO ) THEN
         CALL DLASET( 'Upper', N, N, ZERO, ONE, EX, LDEX )
         RETURN
      END IF
C
      IF ( N.EQ.1 ) THEN
         EX(1,1) = EXP( DELTA*A(1,1) )
         IF ( A(1,1).EQ.ZERO ) THEN
            EXINT(1,1) = DELTA
         ELSE
            EXINT(1,1) = ( ( ONE/A(1,1) )*EX(1,1) ) - ( ONE/A(1,1) )
         END IF
         RETURN
      END IF
C
C     Set some machine parameters.
C
      EPS = DLAMCH( 'Epsilon' )
      SMALL = DLAMCH( 'Safe minimum' )/EPS
C
C     First calculate the Frobenius norm of A, and the scaling factor.
C
      FNORM = DELTA*DLANGE( 'Frobenius', N, N, A, LDA, DWORK )
C
      IF ( FNORM.GT.SQRT( ONE/SMALL ) ) THEN
         INFO = N + 1
         RETURN
      END IF
C
      JSCAL = 0
      DELSC = DELTA
C     WHILE ( FNORM >= HALF ) DO
   20 CONTINUE
      IF ( FNORM.GE.HALF ) THEN
         JSCAL = JSCAL + 1
         DELSC = DELSC*HALF
         FNORM = FNORM*HALF
         GO TO 20
      END IF
C     END WHILE 20
C
C     Calculate the order of the Pade approximation needed to satisfy
C     the requested relative error  TOL.
C
      FNORM2 = FNORM**2
      IQ = 1
      QMAX = FNORM/THREE
      ERR  = DELTA/DELSC*FNORM2**2/FOUR8
C     WHILE ( ERR > TOL*( 2*IQ + 3 - FNORM )/1.64 and QMAX >= EPS ) DO
   40 CONTINUE
      IF ( ERR.GT.TOL*( DBLE( 2*IQ + 3 ) - FNORM )/ONE64 ) THEN
         IQ = IQ + 1
         QMAX = QMAX*DBLE( IQ + 1 )*FNORM/DBLE( 2*IQ*( 2*IQ + 1 ) )
         IF ( QMAX.GE.EPS ) THEN
            ERR = ERR*FNORM2*DBLE( 2*IQ + 5 )/DBLE( ( 2*IQ + 3 )**2
     $                          *( 2*IQ + 4 ) )
            GO TO 40
         END IF
      END IF
C     END WHILE 40
C
C     Initialise DWORK (to contain succesive powers of A),
C                EXINT (to contain the numerator) and
C                EX    (to contain the denominator).
C
      I2IQ1 = 2*IQ + 1
      F2IQ1 = DBLE( I2IQ1 )
      COEFFD = -DBLE( IQ )/F2IQ1
      COEFFN = HALF/F2IQ1
      IJ = 1
C
      DO 80 J = 1, N
C
         DO 60 I = 1, N
            DWORK(IJ)  = DELSC*A(I,J)
            EXINT(I,J) = COEFFN*DWORK(IJ)
            EX(I,J)    = COEFFD*DWORK(IJ)
            IJ = IJ + 1
   60    CONTINUE
C
         EXINT(J,J) = EXINT(J,J) + ONE
         EX(J,J) = EX(J,J) + ONE
   80 CONTINUE
C
      DO 140 KK = 2, IQ
C
C        Calculate the next power of  A*DELSC,  and update the numerator
C        and denominator.
C
         COEFFD = -COEFFD*DBLE( IQ+1-KK )/DBLE( KK*( I2IQ1+1-KK ) )
         IF ( MOD( KK, 2 ).EQ.0 ) THEN
            COEFFN = COEFFD/DBLE( KK + 1 )
         ELSE
            COEFFN = -COEFFD/DBLE( I2IQ1 - KK )
         END IF
         IJ = 1
C
         IF ( LDWORK.GE.2*NN ) THEN
C
C           Enough space for a BLAS 3 calculation.
C
            CALL DGEMM( 'No transpose', 'No transpose', N, N, N, DELSC,
     $                  A, LDA, DWORK, N, ZERO, DWORK(NN+1), N )
            CALL DCOPY( NN, DWORK(NN+1), 1, DWORK, 1 )
C
            DO 100 J = 1, N
               CALL DAXPY( N, COEFFN, DWORK(IJ), 1, EXINT(1,J), 1 )
               CALL DAXPY( N, COEFFD, DWORK(IJ), 1, EX(1,J), 1 )
               IJ = IJ + N
  100       CONTINUE
C
         ELSE
C
C           Not enough space for a BLAS 3 calculation. Use BLAS 2.
C
            DO 120 J = 1, N
               CALL DGEMV( 'No transpose', N, N, ONE, A, LDA, DWORK(IJ),
     $                     1, ZERO, DWORK(NN+1), 1 )
               CALL DCOPY( N, DWORK(NN+1), 1, DWORK(IJ), 1 )
               CALL DSCAL( N, DELSC, DWORK(IJ), 1 )
               CALL DAXPY( N, COEFFN, DWORK(IJ), 1, EXINT(1,J), 1 )
               CALL DAXPY( N, COEFFD, DWORK(IJ), 1, EX(1,J), 1 )
               IJ = IJ + N
  120       CONTINUE
C
         END IF
  140 CONTINUE
C
C     We now have numerator in EXINT, denominator in EX.
C
C     Solve the set of N systems of linear equations for the columns of
C     EXINT  using the LU factorization of EX.
C
      CALL DGESV( N, N, EX, LDEX, IWORK, EXINT, LDEXIN, INFO )
      IF ( INFO.NE.0 )
     $   RETURN
C
C     Now we can form EX from EXINT using the formula:
C     EX = EXINT * A  +  I
C
      DO 160 J = 1, N
         CALL DSCAL( N, DELSC, EXINT(1,J), 1 )
  160 CONTINUE
C
      CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE, EXINT,
     $            LDEXIN, A, LDA, ZERO, EX, LDEX  )
C
      DO 180 J = 1, N
         EX(J,J) = EX(J,J) + ONE
  180 CONTINUE
C
C     EX  and  EXINT  have been evaluated at  DELSC,  so the results
C     must be re-scaled to give the function values at  DELTA.
C
C     EXINT(2t) = EXINT(t) * ^ EX(t) + I [
C     EX(2t) = EX(t) * EX(t)
C
C     DWORK  is used to accumulate products.
C
      DO 200 L = 1, JSCAL
         CALL DLACPY( 'Full', N, N, EXINT, LDEXIN, DWORK, N )
         CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE,
     $               DWORK, N, EX, LDEX, ONE, EXINT, LDEXIN )
         CALL DLACPY( 'Full', N, N, EX, LDEX, DWORK, N )
         CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE,
     $               DWORK, N, DWORK, N, ZERO, EX, LDEX )
  200 CONTINUE
C
      DWORK(1) = 2*NN
      RETURN
C *** Last line of MB05ND ***
      END