File: MC01MD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (162 lines) | stat: -rw-r--r-- 4,855 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
      SUBROUTINE MC01MD( DP, ALPHA, K, P, Q, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To calculate, for a given real polynomial P(x) and a real scalar
C     alpha, the leading K coefficients of the shifted polynomial
C                                                               K-1
C        P(x) = q(1) + q(2) * (x-alpha) + ... + q(K) * (x-alpha)   + ...
C
C     using Horner's algorithm.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     DP      (input) INTEGER
C             The degree of the polynomial P(x).  DP >= 0.
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar value alpha of the problem.
C
C     K       (input) INTEGER
C             The number of coefficients of the shifted polynomial to be
C             computed.  1 <= K <= DP+1.
C
C     P       (input) DOUBLE PRECISION array, dimension (DP+1)
C             This array must contain the coefficients of P(x) in
C             increasing powers of x.
C
C     Q       (output) DOUBLE PRECISION array, dimension (DP+1)
C             The leading K elements of this array contain the first
C             K coefficients of the shifted polynomial in increasing
C             powers of (x - alpha), and the next (DP-K+1) elements
C             are used as internal workspace.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Given the real polynomial
C                                         2                    DP
C        P(x) = p(1) + p(2) * x + p(3) * x  + ... + p(DP+1) * x  ,
C
C     the routine computes the leading K coefficients of the shifted
C     polynomial
C                                                                   K-1
C        P(x) = q(1) + q(2) * (x - alpha) + ... + q(K) * (x - alpha)
C
C     as follows.
C
C     Applying Horner's algorithm (see [1]) to P(x), i.e. dividing P(x)
C     by (x-alpha), yields
C
C        P(x) = q(1) + (x-alpha) * D(x),
C
C     where q(1) is the value of the constant term of the shifted
C     polynomial and D(x) is the quotient polynomial of degree (DP-1)
C     given by
C                                         2                     DP-1
C        D(x) = d(2) + d(3) * x + d(4) * x  + ... +  d(DP+1) * x    .
C
C     Applying Horner's algorithm to D(x) and subsequent quotient
C     polynomials yields q(2) and q(3), q(4), ..., q(K) respectively.
C
C     It follows immediately that q(1) = P(alpha), and in general
C                (i-1)
C        q(i) = P     (alpha) / (i - 1)! for i = 1, 2, ..., K.
C
C     REFERENCES
C
C     [1] STOER, J. and BULIRSCH, R.
C         Introduction to Numerical Analysis.
C         Springer-Verlag. 1980.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C     Supersedes Release 2.0 routine MC01AD by A.J. Geurts.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary polynomial operations, polynomial operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO
      PARAMETER         ( ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      INTEGER           DP, INFO, K
      DOUBLE PRECISION  ALPHA
C     .. Array Arguments ..
      DOUBLE PRECISION  P(*), Q(*)
C     .. Local Scalars ..
      INTEGER           I, J
C     .. External Subroutines ..
      EXTERNAL          DCOPY, XERBLA
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO = 0
      IF( DP.LT.0 ) THEN
         INFO = -1
      ELSE IF( K.LE.0 .OR. K.GT.DP+1 ) THEN
         INFO = -3
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MC01MD', -INFO )
         RETURN
      END IF
C
      CALL DCOPY( DP+1, P, 1, Q, 1 )
      IF ( DP.EQ.0 .OR. ALPHA.EQ.ZERO )
     $   RETURN
C
      DO 40 J = 1, K
C
         DO 20 I = DP, J, -1
            Q(I) = Q(I) + ALPHA*Q(I+1)
   20    CONTINUE
C
   40 CONTINUE
C
      RETURN
C *** Last line of MC01MD ***
      END