1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
SUBROUTINE MC01MD( DP, ALPHA, K, P, Q, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To calculate, for a given real polynomial P(x) and a real scalar
C alpha, the leading K coefficients of the shifted polynomial
C K-1
C P(x) = q(1) + q(2) * (x-alpha) + ... + q(K) * (x-alpha) + ...
C
C using Horner's algorithm.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C DP (input) INTEGER
C The degree of the polynomial P(x). DP >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar value alpha of the problem.
C
C K (input) INTEGER
C The number of coefficients of the shifted polynomial to be
C computed. 1 <= K <= DP+1.
C
C P (input) DOUBLE PRECISION array, dimension (DP+1)
C This array must contain the coefficients of P(x) in
C increasing powers of x.
C
C Q (output) DOUBLE PRECISION array, dimension (DP+1)
C The leading K elements of this array contain the first
C K coefficients of the shifted polynomial in increasing
C powers of (x - alpha), and the next (DP-K+1) elements
C are used as internal workspace.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Given the real polynomial
C 2 DP
C P(x) = p(1) + p(2) * x + p(3) * x + ... + p(DP+1) * x ,
C
C the routine computes the leading K coefficients of the shifted
C polynomial
C K-1
C P(x) = q(1) + q(2) * (x - alpha) + ... + q(K) * (x - alpha)
C
C as follows.
C
C Applying Horner's algorithm (see [1]) to P(x), i.e. dividing P(x)
C by (x-alpha), yields
C
C P(x) = q(1) + (x-alpha) * D(x),
C
C where q(1) is the value of the constant term of the shifted
C polynomial and D(x) is the quotient polynomial of degree (DP-1)
C given by
C 2 DP-1
C D(x) = d(2) + d(3) * x + d(4) * x + ... + d(DP+1) * x .
C
C Applying Horner's algorithm to D(x) and subsequent quotient
C polynomials yields q(2) and q(3), q(4), ..., q(K) respectively.
C
C It follows immediately that q(1) = P(alpha), and in general
C (i-1)
C q(i) = P (alpha) / (i - 1)! for i = 1, 2, ..., K.
C
C REFERENCES
C
C [1] STOER, J. and BULIRSCH, R.
C Introduction to Numerical Analysis.
C Springer-Verlag. 1980.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC01AD by A.J. Geurts.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary polynomial operations, polynomial operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER DP, INFO, K
DOUBLE PRECISION ALPHA
C .. Array Arguments ..
DOUBLE PRECISION P(*), Q(*)
C .. Local Scalars ..
INTEGER I, J
C .. External Subroutines ..
EXTERNAL DCOPY, XERBLA
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
IF( DP.LT.0 ) THEN
INFO = -1
ELSE IF( K.LE.0 .OR. K.GT.DP+1 ) THEN
INFO = -3
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MC01MD', -INFO )
RETURN
END IF
C
CALL DCOPY( DP+1, P, 1, Q, 1 )
IF ( DP.EQ.0 .OR. ALPHA.EQ.ZERO )
$ RETURN
C
DO 40 J = 1, K
C
DO 20 I = DP, J, -1
Q(I) = Q(I) + ALPHA*Q(I+1)
20 CONTINUE
C
40 CONTINUE
C
RETURN
C *** Last line of MC01MD ***
END
|