1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
SUBROUTINE MC01OD( K, REZ, IMZ, REP, IMP, DWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the coefficients of a complex polynomial P(x) from its
C zeros.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C K (input) INTEGER
C The number of zeros (and hence the degree) of P(x).
C K >= 0.
C
C REZ (input) DOUBLE PRECISION array, dimension (K)
C IMZ (input) DOUBLE PRECISION array, dimension (K)
C The real and imaginary parts of the i-th zero of P(x)
C must be stored in REZ(i) and IMZ(i), respectively, where
C i = 1, 2, ..., K. The zeros may be supplied in any order.
C
C REP (output) DOUBLE PRECISION array, dimension (K+1)
C IMP (output) DOUBLE PRECISION array, dimension (K+1)
C These arrays contain the real and imaginary parts,
C respectively, of the coefficients of P(x) in increasing
C powers of x. If K = 0, then REP(1) is set to one and
C IMP(1) is set to zero.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (2*K+2)
C If K = 0, this array is not referenced.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The routine computes the coefficients of the complex K-th degree
C polynomial P(x) as
C
C P(x) = (x - r(1)) * (x - r(2)) * ... * (x - r(K))
C
C where r(i) = (REZ(i),IMZ(i)), using real arithmetic.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC01CD by Alan Brown and
C A.J. Geurts.
C
C REVISIONS
C
C V. Sima, May 2002.
C
C KEYWORDS
C
C Elementary polynomial operations, polynomial operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, K
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), IMP(*), IMZ(*), REP(*), REZ(*)
C .. Local Scalars ..
INTEGER I, K2
DOUBLE PRECISION U, V
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, XERBLA
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
IF( K.LT.0 ) THEN
INFO = -1
C
C Error return.
C
CALL XERBLA( 'MC01OD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
INFO = 0
REP(1) = ONE
IMP(1) = ZERO
IF ( K.EQ.0 )
$ RETURN
C
K2 = K + 2
C
DO 20 I = 1, K
U = REZ(I)
V = IMZ(I)
DWORK(1) = ZERO
DWORK(K2) = ZERO
CALL DCOPY( I, REP, 1, DWORK(2), 1 )
CALL DCOPY( I, IMP, 1, DWORK(K2+1), 1 )
C
IF ( U.NE.ZERO ) THEN
CALL DAXPY( I, -U, REP, 1, DWORK, 1 )
CALL DAXPY( I, -U, IMP, 1, DWORK(K2), 1 )
END IF
C
IF ( V.NE.ZERO ) THEN
CALL DAXPY( I, V, IMP, 1, DWORK, 1 )
CALL DAXPY( I, -V, REP, 1, DWORK(K2), 1 )
END IF
C
CALL DCOPY( I+1, DWORK, 1, REP, 1 )
CALL DCOPY( I+1, DWORK(K2), 1, IMP, 1 )
20 CONTINUE
C
RETURN
C *** Last line of MC01OD ***
END
|