File: MC01PY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (157 lines) | stat: -rw-r--r-- 4,409 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
      SUBROUTINE MC01PY( K, REZ, IMZ, P, DWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the coefficients of a real polynomial P(x) from its
C     zeros. The coefficients are stored in decreasing order of the
C     powers of x.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     K       (input) INTEGER
C             The number of zeros (and hence the degree) of P(x).
C             K >= 0.
C
C     REZ     (input) DOUBLE PRECISION array, dimension (K)
C     IMZ     (input) DOUBLE PRECISION array, dimension (K)
C             The real and imaginary parts of the i-th zero of P(x)
C             must be stored in REZ(i) and IMZ(i), respectively, where
C             i = 1, 2, ..., K. The zeros may be supplied in any order,
C             except that complex conjugate zeros must appear
C             consecutively.
C
C     P       (output) DOUBLE PRECISION array, dimension (K+1)
C             This array contains the coefficients of P(x) in decreasing
C             powers of x.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (K)
C             If K = 0, this array is not referenced.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             > 0:  if INFO = i, (REZ(i),IMZ(i)) is a complex zero but
C                   (REZ(i-1),IMZ(i-1)) is not its conjugate.
C
C     METHOD
C
C     The routine computes the coefficients of the real K-th degree
C     polynomial P(x) as
C
C        P(x) = (x - r(1)) * (x - r(2)) * ... * (x - r(K))
C
C     where r(i) = (REZ(i),IMZ(i)).
C
C     Note that REZ(i) = REZ(j) and IMZ(i) = -IMZ(j) if r(i) and r(j)
C     form a complex conjugate pair (where i <> j), and that IMZ(i) = 0
C     if r(i) is real.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTOR
C
C     V. Sima, Research Institute for Informatics, Bucharest, May 2002.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary polynomial operations, polynomial operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO, K
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK(*), IMZ(*), P(*), REZ(*)
C     .. Local Scalars ..
      INTEGER           I
      DOUBLE PRECISION  U, V
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, XERBLA
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      IF( K.LT.0 ) THEN
         INFO = -1
C
C        Error return.
C
         CALL XERBLA( 'MC01PY', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      INFO = 0
      P(1) = ONE
      IF ( K.EQ.0 )
     $   RETURN
C
      I = 1
C     WHILE ( I <= K ) DO
   20 IF ( I.LE.K ) THEN
         U = REZ(I)
         V = IMZ(I)
         DWORK(I) = ZERO
C
         IF ( V.EQ.ZERO ) THEN
            CALL DAXPY( I, -U, P, 1, DWORK, 1 )
C
         ELSE
            IF ( I.EQ.K ) THEN
               INFO = K
               RETURN
            ELSE IF ( ( U.NE.REZ(I+1) ) .OR. ( V.NE.-IMZ(I+1) ) ) THEN
               INFO = I + 1
               RETURN
            END IF
C
            DWORK(I+1) = ZERO
            CALL DAXPY( I, -(U + U),  P, 1, DWORK, 1 )
            CALL DAXPY( I, U**2+V**2, P, 1, DWORK(2), 1 )
            I = I + 1
         END IF
C
         CALL DCOPY( I, DWORK, 1, P(2), 1 )
         I = I + 1
         GO TO 20
      END IF
C     END WHILE 20
C
      RETURN
C *** Last line of MC01PY ***
      END