1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
SUBROUTINE MC01QD( DA, DB, A, B, RQ, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute, for two given real polynomials A(x) and B(x), the
C quotient polynomial Q(x) and the remainder polynomial R(x) of
C A(x) divided by B(x).
C
C The polynomials Q(x) and R(x) satisfy the relationship
C
C A(x) = B(x) * Q(x) + R(x),
C
C where the degree of R(x) is less than the degree of B(x).
C
C ARGUMENTS
C
C Input/Output Parameters
C
C DA (input) INTEGER
C The degree of the numerator polynomial A(x). DA >= -1.
C
C DB (input/output) INTEGER
C On entry, the degree of the denominator polynomial B(x).
C DB >= 0.
C On exit, if B(DB+1) = 0.0 on entry, then DB contains the
C index of the highest power of x for which B(DB+1) <> 0.0.
C
C A (input) DOUBLE PRECISION array, dimension (DA+1)
C This array must contain the coefficients of the
C numerator polynomial A(x) in increasing powers of x
C unless DA = -1 on entry, in which case A(x) is taken
C to be the zero polynomial.
C
C B (input) DOUBLE PRECISION array, dimension (DB+1)
C This array must contain the coefficients of the
C denominator polynomial B(x) in increasing powers of x.
C
C RQ (output) DOUBLE PRECISION array, dimension (DA+1)
C If DA < DB on exit, then this array contains the
C coefficients of the remainder polynomial R(x) in
C increasing powers of x; Q(x) is the zero polynomial.
C Otherwise, the leading DB elements of this array contain
C the coefficients of R(x) in increasing powers of x, and
C the next (DA-DB+1) elements contain the coefficients of
C Q(x) in increasing powers of x.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = k: if the degree of the denominator polynomial B(x) has
C been reduced to (DB - k) because B(DB+1-j) = 0.0 on
C entry for j = 0, 1, ..., k-1 and B(DB+1-k) <> 0.0.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if on entry, DB >= 0 and B(i) = 0.0, where
C i = 1, 2, ..., DB+1.
C
C METHOD
C
C Given real polynomials
C DA
C A(x) = a(1) + a(2) * x + ... + a(DA+1) * x
C
C and
C DB
C B(x) = b(1) + b(2) * x + ... + b(DB+1) * x
C
C where b(DB+1) is non-zero, the routine computes the coeffcients of
C the quotient polynomial
C DA-DB
C Q(x) = q(1) + q(2) * x + ... + q(DA-DB+1) * x
C
C and the remainder polynomial
C DB-1
C R(x) = r(1) + r(2) * x + ... + r(DB) * x
C
C such that A(x) = B(x) * Q(x) + R(x).
C
C The algorithm used is synthetic division of polynomials (see [1]),
C which involves the following steps:
C
C (a) compute q(k+1) = a(DB+k+1) / b(DB+1)
C
C and
C
C (b) set a(j) = a(j) - q(k+1) * b(j-k) for j = k+1, ..., DB+k.
C
C Steps (a) and (b) are performed for k = DA-DB, DA-DB-1, ..., 0 and
C the algorithm terminates with r(i) = a(i) for i = 1, 2, ..., DB.
C
C REFERENCES
C
C [1] Knuth, D.E.
C The Art of Computer Programming, (Vol. 2, Seminumerical
C Algorithms).
C Addison-Wesley, Reading, Massachusetts (2nd Edition), 1981.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC01ED by A.J. Geurts.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary polynomial operations, polynomial operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER DA, DB, INFO, IWARN
C .. Array Arguments ..
DOUBLE PRECISION A(*), B(*), RQ(*)
C .. Local Scalars ..
INTEGER N
DOUBLE PRECISION Q
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, XERBLA
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
IWARN = 0
INFO = 0
IF( DA.LT.-1 ) THEN
INFO = -1
ELSE IF( DB.LT.0 ) THEN
INFO = -2
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MC01QD', -INFO )
RETURN
END IF
C
C WHILE ( DB >= 0 and B(DB+1) = 0 ) DO
20 IF ( DB.GE.0 ) THEN
IF ( B(DB+1).EQ.ZERO ) THEN
DB = DB - 1
IWARN = IWARN + 1
GO TO 20
END IF
END IF
C END WHILE 20
IF ( DB.EQ.-1 ) THEN
INFO = 1
RETURN
END IF
C
C B(x) is non-zero.
C
IF ( DA.GE.0 ) THEN
N = DA
CALL DCOPY( N+1, A, 1, RQ, 1 )
C WHILE ( N >= DB ) DO
40 IF ( N.GE.DB ) THEN
IF ( RQ(N+1).NE.ZERO ) THEN
Q = RQ(N+1)/B(DB+1)
CALL DAXPY( DB, -Q, B, 1, RQ(N-DB+1), 1 )
RQ(N+1) = Q
END IF
N = N - 1
GO TO 40
END IF
C END WHILE 40
END IF
C
RETURN
C *** Last line of MC01QD ***
END
|