1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
SUBROUTINE MC01RD( DP1, DP2, DP3, ALPHA, P1, P2, P3, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the coefficients of the polynomial
C
C P(x) = P1(x) * P2(x) + alpha * P3(x),
C
C where P1(x), P2(x) and P3(x) are given real polynomials and alpha
C is a real scalar.
C
C Each of the polynomials P1(x), P2(x) and P3(x) may be the zero
C polynomial.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C DP1 (input) INTEGER
C The degree of the polynomial P1(x). DP1 >= -1.
C
C DP2 (input) INTEGER
C The degree of the polynomial P2(x). DP2 >= -1.
C
C DP3 (input/output) INTEGER
C On entry, the degree of the polynomial P3(x). DP3 >= -1.
C On exit, the degree of the polynomial P(x).
C
C ALPHA (input) DOUBLE PRECISION
C The scalar value alpha of the problem.
C
C P1 (input) DOUBLE PRECISION array, dimension (lenp1)
C where lenp1 = DP1 + 1 if DP1 >= 0 and 1 otherwise.
C If DP1 >= 0, then this array must contain the
C coefficients of P1(x) in increasing powers of x.
C If DP1 = -1, then P1(x) is taken to be the zero
C polynomial, P1 is not referenced and can be supplied
C as a dummy array.
C
C P2 (input) DOUBLE PRECISION array, dimension (lenp2)
C where lenp2 = DP2 + 1 if DP2 >= 0 and 1 otherwise.
C If DP2 >= 0, then this array must contain the
C coefficients of P2(x) in increasing powers of x.
C If DP2 = -1, then P2(x) is taken to be the zero
C polynomial, P2 is not referenced and can be supplied
C as a dummy array.
C
C P3 (input/output) DOUBLE PRECISION array, dimension (lenp3)
C where lenp3 = MAX(DP1+DP2,DP3,0) + 1.
C On entry, if DP3 >= 0, then this array must contain the
C coefficients of P3(x) in increasing powers of x.
C On entry, if DP3 = -1, then P3(x) is taken to be the zero
C polynomial.
C On exit, the leading (DP3+1) elements of this array
C contain the coefficients of P(x) in increasing powers of x
C unless DP3 = -1 on exit, in which case the coefficients of
C P(x) (the zero polynomial) are not stored in the array.
C This is the case, for instance, when ALPHA = 0.0 and
C P1(x) or P2(x) is the zero polynomial.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Given real polynomials
C
C DP1 i DP2 i
C P1(x) = SUM a(i+1) * x , P2(x) = SUM b(i+1) * x and
C i=0 i=0
C
C DP3 i
C P3(x) = SUM c(i+1) * x ,
C i=0
C
C the routine computes the coefficents of P(x) = P1(x) * P2(x) +
C DP3 i
C alpha * P3(x) = SUM d(i+1) * x as follows.
C i=0
C
C Let e(i) = c(i) for 1 <= i <= DP3+1 and e(i) = 0 for i > DP3+1.
C Then if DP1 >= DP2,
C
C i
C d(i) = SUM a(k) * b(i-k+1) + f(i), for i = 1, ..., DP2+1,
C k=1
C
C i
C d(i) = SUM a(k) * b(i-k+1) + f(i), for i = DP2+2, ..., DP1+1
C k=i-DP2
C
C and
C DP1+1
C d(i) = SUM a(k) * b(i-k+1) + f(i) for i = DP1+2,...,DP1+DP2+1,
C k=i-DP2
C
C where f(i) = alpha * e(i).
C
C Similar formulas hold for the case DP1 < DP2.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC01FD by C. Klimann and
C A.J. Geurts.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary polynomial operations, polynomial operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER DP1, DP2, DP3, INFO
DOUBLE PRECISION ALPHA
C .. Array Arguments ..
DOUBLE PRECISION P1(*), P2(*), P3(*)
C .. Local Scalars ..
INTEGER D1, D2, D3, DMAX, DMIN, DSUM, E3, I, J, K, L
C .. External Functions ..
DOUBLE PRECISION DDOT
EXTERNAL DDOT
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DSCAL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
IF( DP1.LT.-1 ) THEN
INFO = -1
ELSE IF( DP2.LT.-1 ) THEN
INFO = -2
ELSE IF( DP3.LT.-1 ) THEN
INFO = -3
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MC01RD', -INFO )
RETURN
END IF
C
C Computation of the exact degree of the polynomials, i.e., Di such
C that either Di = -1 or Pi(Di+1) is non-zero.
C
D1 = DP1
C WHILE ( D1 >= 0 and P1(D1+1) = 0 ) DO
20 IF ( D1.GE.0 ) THEN
IF ( P1(D1+1).EQ.ZERO ) THEN
D1 = D1 - 1
GO TO 20
END IF
END IF
C END WHILE 20
D2 = DP2
C WHILE ( D2 >= 0 and P2(D2+1) = 0 ) DO
40 IF ( D2.GE.0 ) THEN
IF ( P2(D2+1).EQ.ZERO ) THEN
D2 = D2 - 1
GO TO 40
END IF
END IF
C END WHILE 40
IF ( ALPHA.EQ.ZERO ) THEN
D3 = -1
ELSE
D3 = DP3
END IF
C WHILE ( D3 >= 0 and P3(D3+1) = 0 ) DO
60 IF ( D3.GE.0 ) THEN
IF ( P3(D3+1).EQ.ZERO ) THEN
D3 = D3 - 1
GO TO 60
END IF
END IF
C END WHILE 60
C
C Computation of P3(x) := ALPHA * P3(x).
C
CALL DSCAL( D3+1, ALPHA, P3, 1 )
C
IF ( ( D1.EQ.-1 ) .OR. ( D2.EQ.-1 ) ) THEN
DP3 = D3
RETURN
END IF
C
C P1(x) and P2(x) are non-zero polynomials.
C
DSUM = D1 + D2
DMAX = MAX( D1, D2 )
DMIN = DSUM - DMAX
C
IF ( D3.LT.DSUM ) THEN
P3(D3+2) = ZERO
CALL DCOPY( DSUM-D3-1, P3(D3+2), 0, P3(D3+3), 1 )
D3 = DSUM
END IF
C
IF ( ( D1.EQ.0 ) .OR. ( D2.EQ.0 ) ) THEN
C
C D1 or D2 is zero.
C
IF ( D1.NE.0 ) THEN
CALL DAXPY( D1+1, P2(1), P1, 1, P3, 1 )
ELSE
CALL DAXPY( D2+1, P1(1), P2, 1, P3, 1 )
END IF
ELSE
C
C D1 and D2 are both nonzero.
C
C First part of the computation.
C
DO 80 I = 1, DMIN + 1
P3(I) = P3(I) + DDOT( I, P1, 1, P2, -1 )
80 CONTINUE
C
C Second part of the computation.
C
DO 100 I = DMIN + 2, DMAX + 1
IF ( D1.GT.D2 ) THEN
K = I - D2
P3(I) = P3(I) + DDOT( DMIN+1, P1(K), 1, P2, -1 )
ELSE
K = I - D1
P3(I) = P3(I) + DDOT( DMIN+1, P2(K), -1, P1, 1 )
END IF
100 CONTINUE
C
C Third part of the computation.
C
E3 = DSUM + 2
C
DO 120 I = DMAX + 2, DSUM + 1
J = E3 - I
K = I - DMIN
L = I - DMAX
IF ( D1.GT.D2 ) THEN
P3(I) = P3(I) + DDOT( J, P1(K), 1, P2(L), -1 )
ELSE
P3(I) = P3(I) + DDOT( J, P1(L), -1, P2(K), 1 )
END IF
120 CONTINUE
C
END IF
C
C Computation of the exact degree of P3(x).
C
C WHILE ( D3 >= 0 and P3(D3+1) = 0 ) DO
140 IF ( D3.GE.0 ) THEN
IF ( P3(D3+1).EQ.ZERO ) THEN
D3 = D3 - 1
GO TO 140
END IF
END IF
C END WHILE 140
DP3 = D3
C
RETURN
C *** Last line of MC01RD ***
END
|