File: MC01RD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (299 lines) | stat: -rw-r--r-- 8,645 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
      SUBROUTINE MC01RD( DP1, DP2, DP3, ALPHA, P1, P2, P3, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the coefficients of the polynomial
C
C        P(x) = P1(x) * P2(x) + alpha * P3(x),
C
C     where P1(x), P2(x) and P3(x) are given real polynomials and alpha
C     is a real scalar.
C
C     Each of the polynomials P1(x), P2(x) and P3(x) may be the zero
C     polynomial.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     DP1     (input) INTEGER
C             The degree of the polynomial P1(x).  DP1 >= -1.
C
C     DP2     (input) INTEGER
C             The degree of the polynomial P2(x).  DP2 >= -1.
C
C     DP3     (input/output) INTEGER
C             On entry, the degree of the polynomial P3(x).  DP3 >= -1.
C             On exit, the degree of the polynomial P(x).
C
C     ALPHA   (input) DOUBLE PRECISION
C             The scalar value alpha of the problem.
C
C     P1      (input) DOUBLE PRECISION array, dimension (lenp1)
C             where lenp1 = DP1 + 1 if DP1 >= 0 and 1 otherwise.
C             If DP1 >= 0, then this array must contain the
C             coefficients of P1(x) in increasing powers of x.
C             If DP1 = -1, then P1(x) is taken to be the zero
C             polynomial, P1 is not referenced and can be supplied
C             as a dummy array.
C
C     P2      (input) DOUBLE PRECISION array, dimension (lenp2)
C             where lenp2 = DP2 + 1 if DP2 >= 0 and 1 otherwise.
C             If DP2 >= 0, then this array must contain the
C             coefficients of P2(x) in increasing powers of x.
C             If DP2 = -1, then P2(x) is taken to be the zero
C             polynomial, P2 is not referenced and can be supplied
C             as a dummy array.
C
C     P3      (input/output) DOUBLE PRECISION array, dimension (lenp3)
C             where lenp3 = MAX(DP1+DP2,DP3,0) + 1.
C             On entry, if DP3 >= 0, then this array must contain the
C             coefficients of P3(x) in increasing powers of x.
C             On entry, if DP3 = -1, then P3(x) is taken to be the zero
C             polynomial.
C             On exit, the leading (DP3+1) elements of this array
C             contain the coefficients of P(x) in increasing powers of x
C             unless DP3 = -1 on exit, in which case the coefficients of
C             P(x) (the zero polynomial) are not stored in the array.
C             This is the case, for instance, when ALPHA = 0.0 and
C             P1(x) or P2(x) is the zero polynomial.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Given real polynomials
C
C                DP1           i           DP2           i
C        P1(x) = SUM a(i+1) * x ,  P2(x) = SUM b(i+1) * x  and
C                i=0                       i=0
C
C                DP3           i
C        P3(x) = SUM c(i+1) * x ,
C                i=0
C
C     the routine computes the coefficents of P(x) = P1(x) * P2(x) +
C                     DP3            i
C     alpha * P3(x) = SUM  d(i+1) * x  as follows.
C                     i=0
C
C     Let e(i) = c(i) for 1 <= i <= DP3+1 and e(i) = 0 for i > DP3+1.
C     Then if DP1 >= DP2,
C
C                i
C        d(i) = SUM a(k) * b(i-k+1) + f(i), for i = 1, ..., DP2+1,
C               k=1
C
C                 i
C        d(i)  = SUM a(k) * b(i-k+1) + f(i), for i = DP2+2, ..., DP1+1
C               k=i-DP2
C
C     and
C                DP1+1
C        d(i)  = SUM a(k) * b(i-k+1) + f(i) for i = DP1+2,...,DP1+DP2+1,
C               k=i-DP2
C
C     where f(i) = alpha * e(i).
C
C     Similar formulas hold for the case DP1 < DP2.
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTORS
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C     Supersedes Release 2.0 routine MC01FD by C. Klimann and
C     A.J. Geurts.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary polynomial operations, polynomial operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO
      PARAMETER         ( ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      INTEGER           DP1, DP2, DP3, INFO
      DOUBLE PRECISION  ALPHA
C     .. Array Arguments ..
      DOUBLE PRECISION  P1(*), P2(*), P3(*)
C     .. Local Scalars ..
      INTEGER           D1, D2, D3, DMAX, DMIN, DSUM, E3, I, J, K, L
C     .. External Functions ..
      DOUBLE PRECISION  DDOT
      EXTERNAL          DDOT
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DSCAL, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      INFO = 0
      IF( DP1.LT.-1 ) THEN
         INFO = -1
      ELSE IF( DP2.LT.-1 ) THEN
         INFO = -2
      ELSE IF( DP3.LT.-1 ) THEN
         INFO = -3
      END IF
C
      IF ( INFO.NE.0 ) THEN
C
C        Error return.
C
         CALL XERBLA( 'MC01RD', -INFO )
         RETURN
      END IF
C
C     Computation of the exact degree of the polynomials, i.e., Di such
C     that either Di = -1 or Pi(Di+1) is non-zero.
C
      D1 = DP1
C     WHILE ( D1 >= 0 and P1(D1+1) = 0 ) DO
   20 IF ( D1.GE.0 ) THEN
         IF ( P1(D1+1).EQ.ZERO ) THEN
            D1 = D1 - 1
            GO TO 20
         END IF
      END IF
C     END WHILE 20
      D2 = DP2
C     WHILE ( D2 >= 0 and P2(D2+1) = 0 ) DO
   40 IF ( D2.GE.0 ) THEN
         IF ( P2(D2+1).EQ.ZERO ) THEN
            D2 = D2 - 1
            GO TO 40
         END IF
      END IF
C     END WHILE 40
      IF ( ALPHA.EQ.ZERO ) THEN
         D3 = -1
      ELSE
         D3 = DP3
      END IF
C     WHILE ( D3 >= 0 and P3(D3+1) = 0 ) DO
   60 IF ( D3.GE.0 ) THEN
         IF ( P3(D3+1).EQ.ZERO ) THEN
            D3 = D3 - 1
            GO TO 60
         END IF
      END IF
C     END WHILE 60
C
C     Computation of P3(x) := ALPHA * P3(x).
C
      CALL DSCAL( D3+1, ALPHA, P3, 1 )
C
      IF ( ( D1.EQ.-1 ) .OR. ( D2.EQ.-1 ) ) THEN
         DP3 = D3
         RETURN
      END IF
C
C     P1(x) and P2(x) are non-zero polynomials.
C
      DSUM = D1 + D2
      DMAX = MAX( D1, D2 )
      DMIN = DSUM - DMAX
C
      IF ( D3.LT.DSUM ) THEN
         P3(D3+2) = ZERO
         CALL DCOPY( DSUM-D3-1, P3(D3+2), 0, P3(D3+3), 1 )
         D3 = DSUM
      END IF
C
      IF ( ( D1.EQ.0 ) .OR. ( D2.EQ.0 ) ) THEN
C
C        D1 or D2 is zero.
C
         IF ( D1.NE.0 ) THEN
            CALL DAXPY( D1+1, P2(1), P1, 1, P3, 1 )
         ELSE
            CALL DAXPY( D2+1, P1(1), P2, 1, P3, 1 )
         END IF
      ELSE
C
C        D1 and D2 are both nonzero.
C
C        First part of the computation.
C
         DO 80 I = 1,  DMIN + 1
            P3(I) = P3(I) + DDOT( I, P1, 1, P2, -1 )
   80    CONTINUE
C
C        Second part of the computation.
C
         DO 100 I = DMIN + 2, DMAX + 1
            IF ( D1.GT.D2 ) THEN
               K = I - D2
               P3(I) = P3(I) + DDOT( DMIN+1, P1(K), 1, P2, -1 )
            ELSE
               K = I - D1
               P3(I) = P3(I) + DDOT( DMIN+1, P2(K), -1, P1, 1 )
            END IF
  100    CONTINUE
C
C        Third part of the computation.
C
         E3 = DSUM + 2
C
         DO 120 I = DMAX + 2, DSUM + 1
            J = E3 - I
            K = I - DMIN
            L = I - DMAX
            IF ( D1.GT.D2 ) THEN
               P3(I) = P3(I) + DDOT( J, P1(K), 1, P2(L), -1 )
            ELSE
               P3(I) = P3(I) + DDOT( J, P1(L), -1, P2(K), 1 )
            END IF
  120    CONTINUE
C
      END IF
C
C     Computation of the exact degree of P3(x).
C
C     WHILE ( D3 >= 0 and P3(D3+1) = 0 ) DO
  140 IF ( D3.GE.0 ) THEN
         IF ( P3(D3+1).EQ.ZERO ) THEN
            D3 = D3 - 1
            GO TO 140
         END IF
      END IF
C     END WHILE 140
      DP3 = D3
C
      RETURN
C *** Last line of MC01RD ***
      END