File: MC01SD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (281 lines) | stat: -rw-r--r-- 7,886 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
      SUBROUTINE MC01SD( DP, P, S, T, MANT, E, IWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To scale the coefficients of the real polynomial P(x) such that
C     the coefficients of the scaled polynomial Q(x) = sP(tx) have
C     minimal variation, where s and t are real scalars.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     DP      (input) INTEGER
C             The degree of the polynomial P(x).  DP >= 0.
C
C     P       (input/output) DOUBLE PRECISION array, dimension (DP+1)
C             On entry, this array must contain the coefficients of P(x)
C             in increasing powers of x.
C             On exit, this array contains the coefficients of the
C             scaled polynomial Q(x) in increasing powers of x.
C
C     S       (output) INTEGER
C             The exponent of the floating-point representation of the
C             scaling factor s = BASE**S, where BASE is the base of the
C             machine representation of floating-point numbers (see
C             LAPACK Library Routine DLAMCH).
C
C     T       (output) INTEGER
C             The exponent of the floating-point representation of the
C             scaling factor t = BASE**T.
C
C     MANT    (output) DOUBLE PRECISION array, dimension (DP+1)
C             This array contains the mantissas of the standard
C             floating-point representation of the coefficients of the
C             scaled polynomial Q(x) in increasing powers of x.
C
C     E       (output) INTEGER array, dimension (DP+1)
C             This array contains the exponents of the standard
C             floating-point representation of the coefficients of the
C             scaled polynomial Q(x) in increasing powers of x.
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (DP+1)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if on entry, P(x) is the zero polynomial.
C
C     METHOD
C
C     Define the variation of the coefficients of the real polynomial
C
C                                         2                DP
C        P(x) = p(0) + p(1) * x + p(2) * x  + ... + p(DP) x
C
C     whose non-zero coefficients can be represented as
C                          e(i)
C        p(i) = m(i) * BASE     (where 1 <= ABS(m(i)) < BASE)
C
C     by
C
C        V = max(e(i)) - min(e(i)),
C
C     where max and min are taken over the indices i for which p(i) is
C     non-zero.
C                                        DP         i    i
C     For the scaled polynomial P(cx) = SUM p(i) * c  * x  with
C                                       i=0
C                j
C     c  = (BASE) , the variation V(j) is given by
C
C       V(j) = max(e(i) + j * i) - min(e(i) + j * i).
C
C     Using the fact that V(j) is a convex function of j, the routine
C     determines scaling factors s = (BASE)**S and t = (BASE)**T such
C     that the coefficients of the scaled polynomial Q(x) = sP(tx)
C     satisfy the following conditions:
C
C       (a) 1 <= q(0) < BASE and
C
C       (b) the variation of the coefficients of Q(x) is minimal.
C
C     Further details can be found in [1].
C
C     REFERENCES
C
C     [1] Dunaway, D.K.
C         Calculation of Zeros of a Real Polynomial through
C         Factorization using Euclid's Algorithm.
C         SIAM J. Numer. Anal., 11, pp. 1087-1104, 1974.
C
C     NUMERICAL ASPECTS
C
C     Since the scaling is performed on the exponents of the floating-
C     point representation of the coefficients of P(x), no rounding
C     errors occur during the computation of the coefficients of Q(x).
C
C     FURTHER COMMENTS
C
C     The scaling factors s and t are BASE dependent.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C     Supersedes Release 2.0 routine MC01GD by A.J. Geurts.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary polynomial operations, polynomial operations.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO
      PARAMETER         ( ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      INTEGER           DP, INFO, S, T
C     .. Array Arguments ..
      INTEGER           E(*), IWORK(*)
      DOUBLE PRECISION  MANT(*), P(*)
C     .. Local Scalars ..
      LOGICAL           OVFLOW
      INTEGER           BETA, DV, I, INC, J, LB, M, UB, V0, V1
C     .. External Functions ..
      INTEGER           MC01SX
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH, MC01SX
C     .. External Subroutines ..
      EXTERNAL          MC01SW, MC01SY, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         DBLE, NINT
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      IF( DP.LT.0 ) THEN
         INFO = -1
C
C        Error return.
C
         CALL XERBLA( 'MC01SD', -INFO )
         RETURN
      END IF
C
      INFO = 0
      LB = 1
C     WHILE ( LB <= DP+1 and P(LB) = 0 ) DO
   20 IF ( LB.LE.DP+1 ) THEN
         IF ( P(LB).EQ.ZERO ) THEN
            LB = LB + 1
            GO TO 20
         END IF
      END IF
C     END WHILE 20
C
C     LB = MIN( i: P(i) non-zero).
C
      IF ( LB.EQ.DP+2 ) THEN
         INFO = 1
         RETURN
      END IF
C
      UB = DP + 1
C     WHILE ( P(UB) = 0 ) DO
   40 IF ( P(UB).EQ.ZERO ) THEN
         UB = UB - 1
         GO TO 40
      END IF
C     END WHILE 40
C
C     UB = MAX(i: P(i) non-zero).
C
      BETA = DLAMCH( 'Base' )
C
      DO 60 I = 1, DP + 1
         CALL MC01SW( P(I), BETA, MANT(I), E(I) )
   60 CONTINUE
C
C     First prescaling.
C
      M = E(LB)
      IF ( M.NE.0 ) THEN
C
         DO 80 I = LB, UB
            IF ( MANT(I).NE.ZERO ) E(I) = E(I) - M
   80    CONTINUE
C
      END IF
      S = -M
C
C     Second prescaling.
C
      IF ( UB.GT.1 ) M = NINT( DBLE( E(UB) )/DBLE( UB-1 ) )
C
      DO 100 I = LB, UB
         IF ( MANT(I).NE.ZERO ) E(I) = E(I) - M*(I-1)
  100 CONTINUE
C
      T = -M
C
      V0 = MC01SX( LB, UB, E, MANT )
      J = 1
C
      DO 120 I = LB, UB
         IF ( MANT(I).NE.ZERO ) IWORK(I) = E(I) + (I-1)
  120 CONTINUE
C
      V1 = MC01SX( LB, UB, IWORK, MANT )
      DV = V1 - V0
      IF ( DV.NE.0 ) THEN
         IF ( DV.GT.0 ) THEN
            J = 0
            INC = -1
            V1 = V0
            DV = -DV
C
            DO 130 I = LB, UB
               IWORK(I) = E(I)
  130       CONTINUE
C
         ELSE
            INC = 1
         END IF
C        WHILE ( DV < 0 ) DO
  140    IF ( DV.LT.0 ) THEN
            V0 = V1
C
            DO 150 I = LB, UB
               E(I) = IWORK(I)
  150       CONTINUE
C
            J = J + INC
C
            DO 160 I = LB, UB
               IWORK(I) = E(I) + INC*(I-1 )
  160       CONTINUE
C
            V1 = MC01SX( LB, UB, IWORK, MANT )
            DV = V1 - V0
            GO TO 140
         END IF
C        END WHILE 140
         T = T + J - INC
      END IF
C
C     Evaluation of the output parameters.
C
      DO 180 I = LB, UB
         CALL MC01SY( MANT(I), E(I), BETA, P(I), OVFLOW )
  180 CONTINUE
C
      RETURN
C *** Last line of MC01SD ***
      END