1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
SUBROUTINE MC01TD( DICO, DP, P, STABLE, NZ, DWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To determine whether or not a given polynomial P(x) with real
C coefficients is stable, either in the continuous-time or discrete-
C time case.
C
C A polynomial is said to be stable in the continuous-time case
C if all its zeros lie in the left half-plane, and stable in the
C discrete-time case if all its zeros lie inside the unit circle.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Indicates whether the stability test to be applied to
C P(x) is in the continuous-time or discrete-time case as
C follows:
C = 'C': Continuous-time case;
C = 'D': Discrete-time case.
C
C Input/Output Parameters
C
C DP (input/output) INTEGER
C On entry, the degree of the polynomial P(x). DP >= 0.
C On exit, if P(DP+1) = 0.0 on entry, then DP contains the
C index of the highest power of x for which P(DP+1) <> 0.0.
C
C P (input) DOUBLE PRECISION array, dimension (DP+1)
C This array must contain the coefficients of P(x) in
C increasing powers of x.
C
C STABLE (output) LOGICAL
C Contains the value .TRUE. if P(x) is stable and the value
C .FALSE. otherwise (see also NUMERICAL ASPECTS).
C
C NZ (output) INTEGER
C If INFO = 0, contains the number of unstable zeros - that
C is, the number of zeros of P(x) in the right half-plane if
C DICO = 'C' or the number of zeros of P(x) outside the unit
C circle if DICO = 'D' (see also NUMERICAL ASPECTS).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (2*DP+2)
C The leading (DP+1) elements of DWORK contain the Routh
C coefficients, if DICO = 'C', or the constant terms of
C the Schur-Cohn transforms, if DICO = 'D'.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = k: if the degree of the polynomial P(x) has been
C reduced to (DB - k) because P(DB+1-j) = 0.0 on entry
C for j = 0, 1,..., k-1 and P(DB+1-k) <> 0.0.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if on entry, P(x) is the zero polynomial;
C = 2: if the polynomial P(x) is most probably unstable,
C although it may be stable with one or more zeros
C very close to either the imaginary axis if
C DICO = 'C' or the unit circle if DICO = 'D'.
C The number of unstable zeros (NZ) is not determined.
C
C METHOD
C
C The stability of the real polynomial
C 2 DP
C P(x) = p(0) + p(1) * x + p(2) * x + ... + p(DP) x
C
C is determined as follows.
C
C In the continuous-time case (DICO = 'C') the Routh algorithm
C (see [1]) is used. The routine computes the Routh coefficients and
C if they are non-zero then the number of sign changes in the
C sequence of the coefficients is equal to the number of zeros with
C positive imaginary part.
C
C In the discrete-time case (DICO = 'D') the Schur-Cohn
C algorithm (see [2] and [3]) is applied to the reciprocal
C polynomial
C 2 DP
C Q(x) = p(DP) + p(DP-1) * x + p(DP-2) * x + ... + p(0) x .
C
C The routine computes the constant terms of the Schur transforms
C and if all of them are non-zero then the number of zeros of P(x)
C with modulus greater than unity is obtained from the sequence of
C constant terms.
C
C REFERENCES
C
C [1] Gantmacher, F.R.
C Applications of the Theory of Matrices.
C Interscience Publishers, New York, 1959.
C
C [2] Kucera, V.
C Discrete Linear Control. The Algorithmic Approach.
C John Wiley & Sons, Chichester, 1979.
C
C [3] Henrici, P.
C Applied and Computational Complex Analysis (Vol. 1).
C John Wiley & Sons, New York, 1974.
C
C NUMERICAL ASPECTS
C
C The algorithm used by the routine is numerically stable.
C
C Note that if some of the Routh coefficients (DICO = 'C') or
C some of the constant terms of the Schur-Cohn transforms (DICO =
C 'D') are small relative to EPS (the machine precision), then
C the number of unstable zeros (and hence the value of STABLE) may
C be incorrect.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC01HD by F. Delebecque and
C A.J. Geurts.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary polynomial operations, polynomial operations,
C stability, stability criteria, zeros.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO
LOGICAL STABLE
INTEGER DP, INFO, IWARN, NZ
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), P(*)
C .. Local Scalars ..
LOGICAL DICOC
INTEGER I, K, K1, K2, SIGNUM
DOUBLE PRECISION ALPHA, P1, PK1
C .. External Functions ..
INTEGER IDAMAX
LOGICAL LSAME
EXTERNAL IDAMAX, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DRSCL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC SIGN
C .. Executable Statements ..
C
IWARN = 0
INFO = 0
DICOC = LSAME( DICO, 'C' )
C
C Test the input scalar arguments.
C
IF( .NOT.DICOC .AND. .NOT.LSAME( DICO, 'D' ) ) THEN
INFO = -1
ELSE IF( DP.LT.0 ) THEN
INFO = -2
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MC01TD', -INFO )
RETURN
END IF
C
C WHILE (DP >= 0 and P(DP+1) = 0 ) DO
20 IF ( DP.GE.0 ) THEN
IF ( P(DP+1).EQ.ZERO ) THEN
DP = DP - 1
IWARN = IWARN + 1
GO TO 20
END IF
END IF
C END WHILE 20
C
IF ( DP.EQ.-1 ) THEN
INFO = 1
RETURN
END IF
C
C P(x) is not the zero polynomial and its degree is exactly DP.
C
IF ( DICOC ) THEN
C
C Continuous-time case.
C
C Compute the Routh coefficients and the number of sign changes.
C
CALL DCOPY( DP+1, P, 1, DWORK, 1 )
NZ = 0
K = DP
C WHILE ( K > 0 and DWORK(K) non-zero) DO
40 IF ( K.GT.0 ) THEN
IF ( DWORK(K).EQ.ZERO ) THEN
INFO = 2
ELSE
ALPHA = DWORK(K+1)/DWORK(K)
IF ( ALPHA.LT.ZERO ) NZ = NZ + 1
K = K - 1
C
DO 60 I = K, 2, -2
DWORK(I) = DWORK(I) - ALPHA*DWORK(I-1)
60 CONTINUE
C
GO TO 40
END IF
END IF
C END WHILE 40
ELSE
C
C Discrete-time case.
C
C To apply [3], section 6.8, on the reciprocal of polynomial
C P(x) the elements of the array P are copied in DWORK in
C reverse order.
C
CALL DCOPY( DP+1, P, 1, DWORK, -1 )
C K-1
C DWORK(K),...,DWORK(DP+1), are the coefficients of T P(x)
C scaled with a factor alpha(K) in order to avoid over- or
C underflow,
C i-1
C DWORK(i), i = 1,...,K, contains alpha(i) * T P(0).
C
SIGNUM = ONE
NZ = 0
K = 1
C WHILE ( K <= DP and DWORK(K) non-zero ) DO
80 IF ( ( K.LE.DP ) .AND. ( INFO.EQ.0 ) ) THEN
C K
C Compute the coefficients of T P(x).
C
K1 = DP - K + 2
K2 = DP + 2
ALPHA = DWORK(K-1+IDAMAX( K1, DWORK(K), 1 ))
IF ( ALPHA.EQ.ZERO ) THEN
INFO = 2
ELSE
CALL DCOPY( K1, DWORK(K), 1, DWORK(K2), 1 )
CALL DRSCL( K1, ALPHA, DWORK(K2), 1 )
P1 = DWORK(K2)
PK1 = DWORK(K2+K1-1)
C
DO 100 I = 1, K1 - 1
DWORK(K+I) = P1*DWORK(DP+1+I) - PK1*DWORK(K2+K1-I)
100 CONTINUE
C
C Compute the number of unstable zeros.
C
K = K + 1
IF ( DWORK(K).EQ.ZERO ) THEN
INFO = 2
ELSE
SIGNUM = SIGNUM*SIGN( ONE, DWORK(K) )
IF ( SIGNUM.LT.ZERO ) NZ = NZ + 1
END IF
GO TO 80
END IF
C END WHILE 80
END IF
END IF
C
IF ( ( INFO.EQ.0 ) .AND. ( NZ.EQ.0 ) ) THEN
STABLE = .TRUE.
ELSE
STABLE = .FALSE.
END IF
C
RETURN
C *** Last line of MC01TD ***
END
|