1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
SUBROUTINE MC01VD( A, B, C, Z1RE, Z1IM, Z2RE, Z2IM, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the roots of a quadratic equation with real
C coefficients.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C A (input) DOUBLE PRECISION
C The value of the coefficient of the quadratic term.
C
C B (input) DOUBLE PRECISION
C The value of the coefficient of the linear term.
C
C C (input) DOUBLE PRECISION
C The value of the coefficient of the constant term.
C
C Z1RE (output) DOUBLE PRECISION
C Z1IM (output) DOUBLE PRECISION
C The real and imaginary parts, respectively, of the largest
C root in magnitude.
C
C Z2RE (output) DOUBLE PRECISION
C Z2IM (output) DOUBLE PRECISION
C The real and imaginary parts, respectively, of the
C smallest root in magnitude.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: if on entry, either A = B = 0.0 or A = 0.0 and the
C root -C/B overflows; in this case Z1RE, Z1IM, Z2RE
C and Z2IM are unassigned;
C = 2: if on entry, A = 0.0; in this case Z1RE contains
C BIG and Z1IM contains zero, where BIG is a
C representable number near the overflow threshold
C of the machine (see LAPACK Library Routine DLAMCH);
C = 3: if on entry, either C = 0.0 and the root -B/A
C overflows or A, B and C are non-zero and the largest
C real root in magnitude cannot be computed without
C overflow; in this case Z1RE contains BIG and Z1IM
C contains zero;
C = 4: if the roots cannot be computed without overflow; in
C this case Z1RE, Z1IM, Z2RE and Z2IM are unassigned.
C
C METHOD
C
C The routine computes the roots (r1 and r2) of the real quadratic
C equation
C 2
C a * x + b * x + c = 0
C
C as
C - b - SIGN(b) * SQRT(b * b - 4 * a * c) c
C r1 = --------------------------------------- and r2 = ------
C 2 * a a * r1
C
C unless a = 0, in which case
C
C -c
C r1 = --.
C b
C
C Precautions are taken to avoid overflow and underflow wherever
C possible.
C
C NUMERICAL ASPECTS
C
C The algorithm is numerically stable.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC01JD by A.J. Geurts.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Quadratic equation, zeros.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, FOUR
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, FOUR=4.0D0 )
C .. Scalar Arguments ..
INTEGER INFO
DOUBLE PRECISION A, B, C, Z1IM, Z1RE, Z2IM, Z2RE
C .. Local Scalars ..
LOGICAL OVFLOW
INTEGER BETA, EA, EAPLEC, EB, EB2, EC, ED
DOUBLE PRECISION ABSA, ABSB, ABSC, BIG, M1, M2, MA, MB, MC, MD,
$ SFMIN, W
C .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
C .. External Subroutines ..
EXTERNAL MC01SW, MC01SY
C .. Intrinsic Functions ..
INTRINSIC ABS, MOD, SIGN, SQRT
C .. Executable Statements ..
C
C Detect special cases.
C
INFO = 0
BETA = DLAMCH( 'Base' )
SFMIN = DLAMCH( 'Safe minimum' )
BIG = ONE/SFMIN
IF ( A.EQ.ZERO ) THEN
IF ( B.EQ.ZERO ) THEN
INFO = 1
ELSE
OVFLOW = .FALSE.
Z2RE = ZERO
IF ( C.NE.ZERO ) THEN
ABSB = ABS( B )
IF ( ABSB.GE.ONE ) THEN
IF ( ABS( C ).GE.ABSB*SFMIN ) Z2RE = -C/B
ELSE
IF ( ABS( C ).LE.ABSB*BIG ) THEN
Z2RE = -C/B
ELSE
OVFLOW = .TRUE.
Z2RE = BIG
IF ( SIGN( ONE, B )*SIGN( ONE, C ).GT.ZERO )
$ Z2RE = -BIG
END IF
END IF
END IF
IF ( OVFLOW ) THEN
INFO = 1
ELSE
Z1RE = BIG
Z1IM = ZERO
Z2IM = ZERO
INFO = 2
END IF
END IF
RETURN
END IF
C
IF ( C.EQ.ZERO ) THEN
OVFLOW = .FALSE.
Z1RE = ZERO
IF ( B.NE.ZERO ) THEN
ABSA = ABS( A )
IF ( ABSA.GE.ONE ) THEN
IF ( ABS( B ).GE.ABSA*SFMIN ) Z1RE = -B/A
ELSE
IF ( ABS( B ).LE.ABSA*BIG ) THEN
Z1RE = -B/A
ELSE
OVFLOW = .TRUE.
Z1RE = BIG
END IF
END IF
END IF
IF ( OVFLOW ) INFO = 3
Z1IM = ZERO
Z2RE = ZERO
Z2IM = ZERO
RETURN
END IF
C
C A and C are non-zero.
C
IF ( B.EQ.ZERO ) THEN
OVFLOW = .FALSE.
ABSC = SQRT( ABS( C ) )
ABSA = SQRT( ABS( A ) )
W = ZERO
IF ( ABSA.GE.ONE ) THEN
IF ( ABSC.GE.ABSA*SFMIN ) W = ABSC/ABSA
ELSE
IF ( ABSC.LE.ABSA*BIG ) THEN
W = ABSC/ABSA
ELSE
OVFLOW = .TRUE.
W = BIG
END IF
END IF
IF ( OVFLOW ) THEN
INFO = 4
ELSE
IF ( SIGN( ONE, A )*SIGN( ONE, C ).GT.ZERO ) THEN
Z1RE = ZERO
Z2RE = ZERO
Z1IM = W
Z2IM = -W
ELSE
Z1RE = W
Z2RE = -W
Z1IM = ZERO
Z2IM = ZERO
END IF
END IF
RETURN
END IF
C
C A, B and C are non-zero.
C
CALL MC01SW( A, BETA, MA, EA )
CALL MC01SW( B, BETA, MB, EB )
CALL MC01SW( C, BETA, MC, EC )
C
C Compute a 'near' floating-point representation of the discriminant
C D = MD * BETA**ED.
C
EAPLEC = EA + EC
EB2 = 2*EB
IF ( EAPLEC.GT.EB2 ) THEN
CALL MC01SY( MB*MB, EB2-EAPLEC, BETA, W, OVFLOW )
W = W - FOUR*MA*MC
CALL MC01SW( W, BETA, MD, ED )
ED = ED + EAPLEC
ELSE
CALL MC01SY( FOUR*MA*MC, EAPLEC-EB2, BETA, W, OVFLOW )
W = MB*MB - W
CALL MC01SW( W, BETA, MD, ED )
ED = ED + EB2
END IF
C
IF ( MOD( ED, 2 ).NE.0 ) THEN
ED = ED + 1
MD = MD/BETA
END IF
C
C Complex roots.
C
IF ( MD.LT.ZERO ) THEN
CALL MC01SY( -MB/( 2*MA ), EB-EA, BETA, Z1RE, OVFLOW )
IF ( OVFLOW ) THEN
INFO = 4
ELSE
CALL MC01SY( SQRT( -MD )/( 2*MA ), ED/2-EA, BETA, Z1IM,
$ OVFLOW )
IF ( OVFLOW ) THEN
INFO = 4
ELSE
Z2RE = Z1RE
Z2IM = -Z1IM
END IF
END IF
RETURN
END IF
C
C Real roots.
C
MD = SQRT( MD )
ED = ED/2
IF ( ED.GT.EB ) THEN
CALL MC01SY( ABS( MB ), EB-ED, BETA, W, OVFLOW )
W = W + MD
M1 = -SIGN( ONE, MB )*W/( 2*MA )
CALL MC01SY( M1, ED-EA, BETA, Z1RE, OVFLOW )
IF ( OVFLOW ) THEN
Z1RE = BIG
INFO = 3
END IF
M2 = -SIGN( ONE, MB )*2*MC/W
CALL MC01SY( M2, EC-ED, BETA, Z2RE, OVFLOW )
ELSE
CALL MC01SY( MD, ED-EB, BETA, W, OVFLOW )
W = W + ABS( MB )
M1 = -SIGN( ONE, MB )*W/( 2*MA )
CALL MC01SY( M1, EB-EA, BETA, Z1RE, OVFLOW )
IF ( OVFLOW ) THEN
Z1RE = BIG
INFO = 3
END IF
M2 = -SIGN( ONE, MB )*2*MC/W
CALL MC01SY( M2, EC-EB, BETA, Z2RE, OVFLOW )
END IF
Z1IM = ZERO
Z2IM = ZERO
C
RETURN
C *** Last line of MC01VD ***
END
|