File: MC01VD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (304 lines) | stat: -rw-r--r-- 8,983 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
      SUBROUTINE MC01VD( A, B, C, Z1RE, Z1IM, Z2RE, Z2IM, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the roots of a quadratic equation with real
C     coefficients.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     A       (input) DOUBLE PRECISION
C             The value of the coefficient of the quadratic term.
C
C     B       (input) DOUBLE PRECISION
C             The value of the coefficient of the linear term.
C
C     C       (input) DOUBLE PRECISION
C             The value of the coefficient of the constant term.
C
C     Z1RE    (output) DOUBLE PRECISION
C     Z1IM    (output) DOUBLE PRECISION
C             The real and imaginary parts, respectively, of the largest
C             root in magnitude.
C
C     Z2RE    (output) DOUBLE PRECISION
C     Z2IM    (output) DOUBLE PRECISION
C             The real and imaginary parts, respectively, of the
C             smallest root in magnitude.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             = 1:  if on entry, either A = B = 0.0 or A = 0.0 and the
C                   root -C/B overflows; in this case Z1RE, Z1IM, Z2RE
C                   and Z2IM are unassigned;
C             = 2:  if on entry, A = 0.0; in this case Z1RE contains
C                   BIG and Z1IM contains zero, where BIG is a
C                   representable number near the overflow threshold
C                   of the machine (see LAPACK Library Routine DLAMCH);
C             = 3:  if on entry, either C = 0.0 and the root -B/A
C                   overflows or A, B and C are non-zero and the largest
C                   real root in magnitude cannot be computed without
C                   overflow; in this case Z1RE contains BIG and Z1IM
C                   contains zero;
C             = 4:  if the roots cannot be computed without overflow; in
C                   this case Z1RE, Z1IM, Z2RE and Z2IM are unassigned.
C
C     METHOD
C
C     The routine computes the roots (r1 and r2) of the real quadratic
C     equation
C             2
C        a * x  + b * x + c = 0
C
C     as
C             - b - SIGN(b) * SQRT(b * b - 4 * a * c)             c
C        r1 = ---------------------------------------  and r2 = ------
C                              2 * a                            a * r1
C
C     unless a = 0, in which case
C
C             -c
C        r1 = --.
C              b
C
C     Precautions are taken to avoid overflow and underflow wherever
C     possible.
C
C     NUMERICAL ASPECTS
C
C     The algorithm is numerically stable.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C     Supersedes Release 2.0 routine MC01JD by A.J. Geurts.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Quadratic equation, zeros.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE, FOUR
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0, FOUR=4.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INFO
      DOUBLE PRECISION  A, B, C, Z1IM, Z1RE, Z2IM, Z2RE
C     .. Local Scalars ..
      LOGICAL           OVFLOW
      INTEGER           BETA, EA, EAPLEC, EB, EB2, EC, ED
      DOUBLE PRECISION  ABSA, ABSB, ABSC, BIG, M1, M2, MA, MB, MC, MD,
     $                  SFMIN, W
C     .. External Functions ..
      DOUBLE PRECISION  DLAMCH
      EXTERNAL          DLAMCH
C     .. External Subroutines ..
      EXTERNAL          MC01SW, MC01SY
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, MOD, SIGN, SQRT
C     .. Executable Statements ..
C
C     Detect special cases.
C
      INFO  = 0
      BETA  = DLAMCH( 'Base' )
      SFMIN = DLAMCH( 'Safe minimum' )
      BIG   = ONE/SFMIN
      IF ( A.EQ.ZERO ) THEN
         IF ( B.EQ.ZERO ) THEN
            INFO = 1
         ELSE
            OVFLOW = .FALSE.
            Z2RE   =  ZERO
            IF ( C.NE.ZERO ) THEN
               ABSB = ABS( B )
               IF ( ABSB.GE.ONE ) THEN
                  IF ( ABS( C ).GE.ABSB*SFMIN ) Z2RE = -C/B
               ELSE
                  IF ( ABS( C ).LE.ABSB*BIG ) THEN
                     Z2RE = -C/B
                  ELSE
                     OVFLOW = .TRUE.
                     Z2RE   = BIG
                     IF ( SIGN( ONE, B )*SIGN( ONE, C ).GT.ZERO )
     $                  Z2RE = -BIG
                  END IF
               END IF
            END IF
            IF ( OVFLOW ) THEN
               INFO = 1
            ELSE
               Z1RE = BIG
               Z1IM = ZERO
               Z2IM = ZERO
               INFO = 2
            END IF
         END IF
         RETURN
      END IF
C
      IF ( C.EQ.ZERO ) THEN
         OVFLOW = .FALSE.
         Z1RE   =  ZERO
         IF ( B.NE.ZERO ) THEN
            ABSA = ABS( A )
            IF ( ABSA.GE.ONE ) THEN
               IF ( ABS( B ).GE.ABSA*SFMIN ) Z1RE = -B/A
            ELSE
               IF ( ABS( B ).LE.ABSA*BIG ) THEN
                  Z1RE = -B/A
               ELSE
                  OVFLOW = .TRUE.
                  Z1RE   = BIG
               END IF
            END IF
         END IF
         IF ( OVFLOW ) INFO = 3
         Z1IM = ZERO
         Z2RE = ZERO
         Z2IM = ZERO
         RETURN
      END IF
C
C     A and C are non-zero.
C
      IF ( B.EQ.ZERO ) THEN
         OVFLOW = .FALSE.
         ABSC   = SQRT( ABS( C ) )
         ABSA   = SQRT( ABS( A ) )
         W =  ZERO
         IF ( ABSA.GE.ONE ) THEN
            IF ( ABSC.GE.ABSA*SFMIN ) W = ABSC/ABSA
         ELSE
            IF ( ABSC.LE.ABSA*BIG ) THEN
               W = ABSC/ABSA
            ELSE
               OVFLOW = .TRUE.
               W = BIG
            END IF
         END IF
         IF ( OVFLOW ) THEN
            INFO = 4
         ELSE
            IF ( SIGN( ONE, A )*SIGN( ONE, C ).GT.ZERO ) THEN
               Z1RE = ZERO
               Z2RE = ZERO
               Z1IM =  W
               Z2IM = -W
            ELSE
               Z1RE =  W
               Z2RE = -W
               Z1IM = ZERO
               Z2IM = ZERO
            END IF
         END IF
         RETURN
      END IF
C
C     A, B and C are non-zero.
C
      CALL MC01SW( A, BETA, MA, EA )
      CALL MC01SW( B, BETA, MB, EB )
      CALL MC01SW( C, BETA, MC, EC )
C
C     Compute a 'near' floating-point representation of the discriminant
C     D = MD * BETA**ED.
C
      EAPLEC = EA + EC
      EB2 = 2*EB
      IF ( EAPLEC.GT.EB2 ) THEN
         CALL MC01SY( MB*MB, EB2-EAPLEC, BETA, W, OVFLOW )
         W = W - FOUR*MA*MC
         CALL MC01SW( W, BETA, MD, ED )
         ED = ED + EAPLEC
      ELSE
         CALL MC01SY( FOUR*MA*MC, EAPLEC-EB2, BETA, W, OVFLOW )
         W = MB*MB - W
         CALL MC01SW( W, BETA, MD, ED )
         ED = ED + EB2
      END IF
C
      IF ( MOD( ED, 2 ).NE.0 ) THEN
         ED = ED + 1
         MD = MD/BETA
      END IF
C
C     Complex roots.
C
      IF ( MD.LT.ZERO ) THEN
         CALL MC01SY( -MB/( 2*MA ), EB-EA, BETA, Z1RE, OVFLOW )
         IF ( OVFLOW ) THEN
            INFO = 4
         ELSE
            CALL MC01SY( SQRT( -MD )/( 2*MA ), ED/2-EA, BETA, Z1IM,
     $                   OVFLOW )
            IF ( OVFLOW ) THEN
               INFO = 4
            ELSE
               Z2RE =  Z1RE
               Z2IM = -Z1IM
            END IF
         END IF
         RETURN
      END IF
C
C     Real roots.
C
      MD = SQRT( MD )
      ED = ED/2
      IF ( ED.GT.EB ) THEN
         CALL MC01SY( ABS( MB ), EB-ED, BETA, W, OVFLOW )
         W = W + MD
         M1 = -SIGN( ONE, MB )*W/( 2*MA )
         CALL MC01SY( M1, ED-EA, BETA, Z1RE, OVFLOW )
         IF ( OVFLOW ) THEN
            Z1RE = BIG
            INFO = 3
         END IF
         M2 = -SIGN( ONE, MB )*2*MC/W
         CALL MC01SY( M2, EC-ED, BETA, Z2RE, OVFLOW )
      ELSE
         CALL MC01SY( MD, ED-EB, BETA, W, OVFLOW )
         W  = W + ABS( MB )
         M1 = -SIGN( ONE, MB )*W/( 2*MA )
         CALL MC01SY( M1, EB-EA, BETA, Z1RE, OVFLOW )
         IF ( OVFLOW ) THEN
            Z1RE = BIG
            INFO = 3
         END IF
         M2 = -SIGN( ONE, MB )*2*MC/W
         CALL MC01SY( M2, EC-EB, BETA, Z2RE, OVFLOW )
      END IF
      Z1IM = ZERO
      Z2IM = ZERO
C
      RETURN
C *** Last line of MC01VD ***
      END