File: MC01WD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (156 lines) | stat: -rw-r--r-- 4,487 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
      SUBROUTINE MC01WD( DP, P, U1, U2, Q, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute, for a given real polynomial P(x) and a quadratic
C     polynomial B(x), the quotient polynomial Q(x) and the linear
C     remainder polynomial R(x) such that
C
C        P(x) = B(x) * Q(x) + R(x),
C
C                                 2
C     where B(x) = u1 + u2 * x + x , R(x) = q(1) + q(2) * (u2 + x)
C     and u1, u2, q(1) and q(2) are real scalars.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     DP      (input) INTEGER
C             The degree of the polynomial P(x).  DP >= 0.
C
C     P       (input) DOUBLE PRECISION array, dimension (DP+1)
C             This array must contain the coefficients of P(x) in
C             increasing powers of x.
C
C     U1      (input) DOUBLE PRECISION
C             The value of the constant term of the quadratic
C             polynomial B(x).
C
C     U2      (input) DOUBLE PRECISION
C             The value of the coefficient of x of the quadratic
C             polynomial B(x).
C
C     Q       (output) DOUBLE PRECISION array, dimension (DP+1)
C             If DP >= 1 on entry, then elements Q(1) and Q(2) contain
C             the coefficients q(1) and q(2), respectively, of the
C             remainder polynomial R(x), and the next (DP-1) elements
C             of this array contain the coefficients of the quotient
C             polynomial Q(x) in increasing powers of x.
C             If DP = 0 on entry, then element Q(1) contains the
C             coefficient q(1) of the remainder polynomial R(x) = q(1);
C             Q(x) is the zero polynomial.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     Given the real polynomials
C
C                DP           i                           2
C        P(x) = SUM p(i+1) * x  and B(x) = u1 + u2 * x + x
C               i=0
C
C     the routine uses the recurrence relationships
C
C        q(DP+1) = p(DP+1),
C
C        q(DP) = p(DP) - u2 * q(DP+1) and
C
C        q(i)  = p(i) - u2 * q(i+1) - u1 * q(i+2) for i = DP-1, ..., 1
C
C     to determine the coefficients of the quotient polynomial
C
C               DP-2          i
C        Q(x) = SUM q(i+3) * x
C               i=0
C
C     and the remainder polynomial
C
C        R(x) = q(1) + q(2) * (u2 + x).
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTOR
C
C     Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C     Supersedes Release 2.0 routine MC01KD by A.J. Geurts.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary polynomial operations, polynomial operations,
C     quadratic polynomial.
C
C     ******************************************************************
C
C     .. Scalar Arguments ..
      INTEGER           DP, INFO
      DOUBLE PRECISION  U1, U2
C     .. Array Arguments ..
      DOUBLE PRECISION  P(*), Q(*)
C     .. Local Scalars ..
      INTEGER           I, N
      DOUBLE PRECISION  A, B, C
C     .. External Subroutines ..
      EXTERNAL          XERBLA
C     .. Executable Statements ..
C
C     Test the input scalar arguments.
C
      IF ( DP.LT.0 ) THEN
         INFO = -1
         CALL XERBLA( 'MC01WD', -INFO )
         RETURN
      END IF
C
      INFO = 0
      N = DP + 1
      Q(N) = P(N)
      IF ( N.GT.1 ) THEN
         B = Q(N)
         Q(N-1) = P(N-1) - U2*B
         IF ( N.GT.2 ) THEN
            A = Q(N-1)
C
            DO 20 I = N - 2, 1, -1
               C = P(I) - U2*A - U1*B
               Q(I) = C
               B = A
               A = C
   20       CONTINUE
C
         END IF
      END IF
C
      RETURN
C *** Last line of MC01WD ***
      END