1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
SUBROUTINE MC01WD( DP, P, U1, U2, Q, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute, for a given real polynomial P(x) and a quadratic
C polynomial B(x), the quotient polynomial Q(x) and the linear
C remainder polynomial R(x) such that
C
C P(x) = B(x) * Q(x) + R(x),
C
C 2
C where B(x) = u1 + u2 * x + x , R(x) = q(1) + q(2) * (u2 + x)
C and u1, u2, q(1) and q(2) are real scalars.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C DP (input) INTEGER
C The degree of the polynomial P(x). DP >= 0.
C
C P (input) DOUBLE PRECISION array, dimension (DP+1)
C This array must contain the coefficients of P(x) in
C increasing powers of x.
C
C U1 (input) DOUBLE PRECISION
C The value of the constant term of the quadratic
C polynomial B(x).
C
C U2 (input) DOUBLE PRECISION
C The value of the coefficient of x of the quadratic
C polynomial B(x).
C
C Q (output) DOUBLE PRECISION array, dimension (DP+1)
C If DP >= 1 on entry, then elements Q(1) and Q(2) contain
C the coefficients q(1) and q(2), respectively, of the
C remainder polynomial R(x), and the next (DP-1) elements
C of this array contain the coefficients of the quotient
C polynomial Q(x) in increasing powers of x.
C If DP = 0 on entry, then element Q(1) contains the
C coefficient q(1) of the remainder polynomial R(x) = q(1);
C Q(x) is the zero polynomial.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Given the real polynomials
C
C DP i 2
C P(x) = SUM p(i+1) * x and B(x) = u1 + u2 * x + x
C i=0
C
C the routine uses the recurrence relationships
C
C q(DP+1) = p(DP+1),
C
C q(DP) = p(DP) - u2 * q(DP+1) and
C
C q(i) = p(i) - u2 * q(i+1) - u1 * q(i+2) for i = DP-1, ..., 1
C
C to determine the coefficients of the quotient polynomial
C
C DP-2 i
C Q(x) = SUM q(i+3) * x
C i=0
C
C and the remainder polynomial
C
C R(x) = q(1) + q(2) * (u2 + x).
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC01KD by A.J. Geurts.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary polynomial operations, polynomial operations,
C quadratic polynomial.
C
C ******************************************************************
C
C .. Scalar Arguments ..
INTEGER DP, INFO
DOUBLE PRECISION U1, U2
C .. Array Arguments ..
DOUBLE PRECISION P(*), Q(*)
C .. Local Scalars ..
INTEGER I, N
DOUBLE PRECISION A, B, C
C .. External Subroutines ..
EXTERNAL XERBLA
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
IF ( DP.LT.0 ) THEN
INFO = -1
CALL XERBLA( 'MC01WD', -INFO )
RETURN
END IF
C
INFO = 0
N = DP + 1
Q(N) = P(N)
IF ( N.GT.1 ) THEN
B = Q(N)
Q(N-1) = P(N-1) - U2*B
IF ( N.GT.2 ) THEN
A = Q(N-1)
C
DO 20 I = N - 2, 1, -1
C = P(I) - U2*A - U1*B
Q(I) = C
B = A
A = C
20 CONTINUE
C
END IF
END IF
C
RETURN
C *** Last line of MC01WD ***
END
|