1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
SUBROUTINE MC03ND( MP, NP, DP, P, LDP1, LDP2, DK, GAM, NULLSP,
$ LDNULL, KER, LDKER1, LDKER2, TOL, IWORK, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the coefficients of a minimal polynomial basis
C DK
C K(s) = K(0) + K(1) * s + ... + K(DK) * s
C
C for the right nullspace of the MP-by-NP polynomial matrix of
C degree DP, given by
C DP
C P(s) = P(0) + P(1) * s + ... + P(DP) * s ,
C
C which corresponds to solving the polynomial matrix equation
C P(s) * K(s) = 0.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C MP (input) INTEGER
C The number of rows of the polynomial matrix P(s).
C MP >= 0.
C
C NP (input) INTEGER
C The number of columns of the polynomial matrix P(s).
C NP >= 0.
C
C DP (input) INTEGER
C The degree of the polynomial matrix P(s). DP >= 1.
C
C P (input) DOUBLE PRECISION array, dimension (LDP1,LDP2,DP+1)
C The leading MP-by-NP-by-(DP+1) part of this array must
C contain the coefficients of the polynomial matrix P(s).
C Specifically, P(i,j,k) must contain the (i,j)-th element
C of P(k-1), which is the cofficient of s**(k-1) of P(s),
C where i = 1,2,...,MP, j = 1,2,...,NP and k = 1,2,...,DP+1.
C
C LDP1 INTEGER
C The leading dimension of array P. LDP1 >= MAX(1,MP).
C
C LDP2 INTEGER
C The second dimension of array P. LDP2 >= MAX(1,NP).
C
C DK (output) INTEGER
C The degree of the minimal polynomial basis K(s) for the
C right nullspace of P(s) unless DK = -1, in which case
C there is no right nullspace.
C
C GAM (output) INTEGER array, dimension (DP*MP+1)
C The leading (DK+1) elements of this array contain
C information about the ordering of the right nullspace
C vectors stored in array NULLSP.
C
C NULLSP (output) DOUBLE PRECISION array, dimension
C (LDNULL,(DP*MP+1)*NP)
C The leading NP-by-SUM(i*GAM(i)) part of this array
C contains the right nullspace vectors of P(s) in condensed
C form (as defined in METHOD), where i = 1,2,...,DK+1.
C
C LDNULL INTEGER
C The leading dimension of array NULLSP.
C LDNULL >= MAX(1,NP).
C
C KER (output) DOUBLE PRECISION array, dimension
C (LDKER1,LDKER2,DP*MP+1)
C The leading NP-by-nk-by-(DK+1) part of this array contains
C the coefficients of the minimal polynomial basis K(s),
C where nk = SUM(GAM(i)) and i = 1,2,...,DK+1. Specifically,
C KER(i,j,m) contains the (i,j)-th element of K(m-1), which
C is the coefficient of s**(m-1) of K(s), where i = 1,2,...,
C NP, j = 1,2,...,nk and m = 1,2,...,DK+1.
C
C LDKER1 INTEGER
C The leading dimension of array KER. LDKER1 >= MAX(1,NP).
C
C LDKER2 INTEGER
C The second dimension of array KER. LDKER2 >= MAX(1,NP).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C A tolerance below which matrix elements are considered
C to be zero. If the user sets TOL to be less than
C 10 * EPS * MAX( ||A|| , ||E|| ), then the tolerance is
C F F
C taken as 10 * EPS * MAX( ||A|| , ||E|| ), where EPS is the
C F F
C machine precision (see LAPACK Library Routine DLAMCH) and
C A and E are matrices (as defined in METHOD).
C
C Workspace
C
C IWORK INTEGER array, dimension (m+2*MAX(n,m+1)+n),
C where m = DP*MP and n = (DP-1)*MP + NP.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK The length of the array DWORK.
C LDWORK >= m*n*n + 2*m*n + 2*n*n.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C > 0: if incorrect rank decisions were taken during the
C computations. This failure is not likely to occur.
C The possible values are:
C k, 1 <= k <= DK+1, the k-th diagonal submatrix had
C not a full row rank;
C DK+2, if incorrect dimensions of a full column
C rank submatrix;
C DK+3, if incorrect dimensions of a full row rank
C submatrix.
C
C METHOD
C
C The computation of the right nullspace of the MP-by-NP polynomial
C matrix P(s) of degree DP given by
C DP-1 DP
C P(s) = P(0) + P(1) * s + ... + P(DP-1) * s + P(DP) * s
C
C is performed via the pencil s*E - A, associated with P(s), where
C
C | I | | 0 -P(DP) |
C | . | | I . . |
C A = | . | and E = | . . . |. (1)
C | . | | . 0 . |
C | I | | I 0 -P(2) |
C | P(0) | | I -P(1) |
C
C The pencil s*E - A is transformed by unitary matrices Q and Z such
C that
C
C | sE(eps)-A(eps) | X | X |
C |----------------|----------------|------------|
C | 0 | sE(inf)-A(inf) | X |
C Q'(s*E-A)Z = |=================================|============|.
C | | |
C | 0 | sE(r)-A(r) |
C
C Since s*E(inf)-A(inf) and s*E(r)-A(r) have full column rank, the
C minimal polynomial basis for the right nullspace of Q'(s*E-A)Z
C (and consequently the basis for the right nullspace of s*E - A) is
C completely determined by s*E(eps)-A(eps).
C
C Let Veps(s) be a minimal polynomial basis for the right nullspace
C of s*E(eps)-A(eps). Then
C
C | Veps(s) |
C V(s) = Z * |---------|
C | 0 |
C
C is a minimal polynomial basis for the right nullspace of s*E - A.
C From the structure of s*E - A it can be shown that if V(s) is
C partitioned as
C
C | Vo(s) | (DP-1)*MP
C V(s) = |------ |
C | Ve(s) | NP
C
C then the columns of Ve(s) form a minimal polynomial basis for the
C right nullspace of P(s).
C
C The vectors of Ve(s) are computed and stored in array NULLSP in
C the following condensed form:
C
C || || | || | | || | |
C || U1,0 || U2,0 | U2,1 || U3,0 | U3,1 | U3,2 || U4,0 | ... |,
C || || | || | | || | |
C
C where Ui,j is an NP-by-GAM(i) matrix which contains the i-th block
C of columns of K(j), the j-th coefficient of the polynomial matrix
C representation for the right nullspace
C DK
C K(s) = K(0) + K(1) * s + . . . + K(DK) * s .
C
C The coefficients K(0), K(1), ..., K(DK) are NP-by-nk matrices
C given by
C
C K(0) = | U1,0 | U2,0 | U3,0 | . . . | U(DK+1,0) |
C
C K(1) = | 0 | U2,1 | U3,1 | . . . | U(DK+1,1) |
C
C K(2) = | 0 | 0 | U3,2 | . . . | U(DK+1,2) |
C
C . . . . . . . . . .
C
C K(DK) = | 0 | 0 | 0 | . . . | 0 | U(DK+1,DK)|.
C
C Note that the degree of K(s) satisfies the inequality DK <=
C DP * MIN(MP,NP) and that the dimension of K(s) satisfies the
C inequality (NP-MP) <= nk <= NP.
C
C REFERENCES
C
C [1] Beelen, Th.G.J.
C New Algorithms for Computing the Kronecker structure of a
C Pencil with Applications to Systems and Control Theory.
C Ph.D.Thesis, Eindhoven University of Technology, 1987.
C
C [2] Van Den Hurk, G.J.H.H.
C New Algorithms for Solving Polynomial Matrix Problems.
C Master's Thesis, Eindhoven University of Technology, 1987.
C
C NUMERICAL ASPECTS
C
C The algorithm used by the routine involves the construction of a
C special block echelon form with pivots considered to be non-zero
C when they are larger than TOL. These pivots are then inverted in
C order to construct the columns of the kernel of the polynomial
C matrix. If TOL is chosen to be too small then these inversions may
C be sensitive whereas increasing TOL will make the inversions more
C robust but will affect the block echelon form (and hence the
C column degrees of the polynomial kernel). Furthermore, if the
C elements of the computed polynomial kernel are large relative to
C the polynomial matrix, then the user should consider trying
C several values of TOL.
C
C FURTHER COMMENTS
C
C It also possible to compute a minimal polynomial basis for the
C right nullspace of a pencil, since a pencil is a polynomial matrix
C of degree 1. Thus for the pencil (s*E - A), the required input is
C P(1) = E and P(0) = -A.
C
C The routine can also be used to compute a minimal polynomial
C basis for the left nullspace of a polynomial matrix by simply
C transposing P(s).
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC03BD by A.J. Geurts and MC03BZ by
C Th.G.J. Beelen, A.J. Geurts, and G.J.H.H. van den Hurk.
C
C REVISIONS
C
C Jan. 1998.
C
C KEYWORDS
C
C Echelon form, elementary polynomial operations, input output
C description, polynomial matrix, polynomial operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TEN
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
C .. Scalar Arguments ..
INTEGER DK, DP, INFO, LDKER1, LDKER2, LDNULL, LDP1,
$ LDP2, LDWORK, MP, NP
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER GAM(*), IWORK(*)
DOUBLE PRECISION DWORK(*), KER(LDKER1,LDKER2,*),
$ NULLSP(LDNULL,*), P(LDP1,LDP2,*)
C .. Local Scalars ..
INTEGER GAMJ, H, I, IDIFF, IFIR, J, JWORKA, JWORKE,
$ JWORKQ, JWORKV, JWORKZ, K, M, MUK, N, NBLCKS,
$ NBLCKI, NCA, NCV, NRA, NUK, RANKE, SGAMK, TAIL,
$ VC1, VR2
DOUBLE PRECISION TOLER
C .. Local Arrays ..
INTEGER MNEI(3)
C .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLAPY2
EXTERNAL DLAMCH, DLANGE, DLAPY2
C .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, DLASET, MB04UD, MB04VD, MC03NX,
$ MC03NY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, SQRT
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
M = DP*MP
H = M - MP
N = H + NP
INFO = 0
IF( MP.LT.0 ) THEN
INFO = -1
ELSE IF( NP.LT.0 ) THEN
INFO = -2
ELSE IF( DP.LE.0 ) THEN
INFO = -3
ELSE IF( LDP1.LT.MAX( 1, MP ) ) THEN
INFO = -5
ELSE IF( LDP2.LT.MAX( 1, NP ) ) THEN
INFO = -6
ELSE IF( LDNULL.LT.MAX( 1, NP ) ) THEN
INFO = -10
ELSE IF( LDKER1.LT.MAX( 1, NP ) ) THEN
INFO = -12
ELSE IF( LDKER2.LT.MAX( 1, NP ) ) THEN
INFO = -13
ELSE IF( LDWORK.LT.( N*( M*N + 2*( M + N ) ) ) ) THEN
INFO = -17
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MC03ND', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( MP.EQ.0 .OR. NP.EQ.0 ) THEN
DK = -1
RETURN
END IF
C
JWORKA = 1
JWORKE = JWORKA + M*N
JWORKZ = JWORKE + M*N
JWORKV = JWORKZ + N*N
JWORKQ = JWORKA
C
C Construct the matrices A and E in the pencil s*E-A in (1).
C Workspace: 2*M*N.
C
CALL MC03NX( MP, NP, DP, P, LDP1, LDP2, DWORK(JWORKA), M,
$ DWORK(JWORKE), M )
C
C Computation of the tolerance.
C
TOLER = MAX( DLANGE( 'F', M, NP, DWORK(JWORKE+H*M), M, DWORK ),
$ DLANGE( 'F', MP, NP, P, LDP1, DWORK ) )
TOLER = TEN*DLAMCH( 'Epsilon' )
$ *DLAPY2( TOLER, SQRT( DBLE( H ) ) )
IF ( TOLER.LE.TOL ) TOLER = TOL
C
C Reduction of E to column echelon form E0 = Q' x E x Z and
C transformation of A, A0 = Q' x A x Z.
C Workspace: 2*M*N + N*N + max(M,N).
C
CALL MB04UD( 'No Q', 'Identity Z', M, N, DWORK(JWORKA), M,
$ DWORK(JWORKE), M, DWORK(JWORKQ), M, DWORK(JWORKZ), N,
$ RANKE, IWORK, TOLER, DWORK(JWORKV), INFO )
C
C The contents of ISTAIR is transferred from MB04UD to MB04VD by
C IWORK(i), i=1,...,M.
C In the sequel the arrays IMUK and INUK are part of IWORK, namely:
C IWORK(i), i = M+1,...,M+max(N,M+1), contains IMUK,
C IWORK(i), i = M+max(N,M+1)+1,...,M+2*max(N,M+1), contains INUK.
C IWORK(i), i = M+2*max(N,M+1)+1,...,M+2*max(N,M+1)+N, contains
C IMUK0 (not needed), and is also used as workspace.
C
MUK = M + 1
NUK = MUK + MAX( N, M+1 )
TAIL = NUK + MAX( N, M+1 )
C
CALL MB04VD( 'Separation', 'No Q', 'Update Z', M, N, RANKE,
$ DWORK(JWORKA), M, DWORK(JWORKE), M, DWORK(JWORKQ), M,
$ DWORK(JWORKZ), N, IWORK, NBLCKS, NBLCKI, IWORK(MUK),
$ IWORK(NUK), IWORK(TAIL), MNEI, TOLER, IWORK(TAIL),
$ INFO )
IF ( INFO.GT.0 ) THEN
C
C Incorrect rank decisions.
C
INFO = INFO + NBLCKS
RETURN
END IF
C
C If NBLCKS < 1, or the column dimension of s*E(eps) - A(eps) is
C zero, then there is no right nullspace.
C
IF ( NBLCKS.LT.1 .OR. MNEI(2).EQ.0 ) THEN
DK = -1
RETURN
END IF
C
C Start of the computation of the minimal basis.
C
DK = NBLCKS - 1
NRA = MNEI(1)
NCA = MNEI(2)
C
C Determine a minimal basis VEPS(s) for the right nullspace of the
C pencil s*E(eps)-A(eps) associated with the polynomial matrix P(s).
C Workspace: 2*M*N + N*N + N*N*(M+1).
C
CALL MC03NY( NBLCKS, NRA, NCA, DWORK(JWORKA), M, DWORK(JWORKE), M,
$ IWORK(MUK), IWORK(NUK), DWORK(JWORKV), N, INFO )
C
IF ( INFO.GT.0 )
$ RETURN
C
NCV = IWORK(MUK) - IWORK(NUK)
GAM(1) = NCV
IWORK(1) = 0
IWORK(TAIL) = IWORK(MUK)
C
DO 20 I = 2, NBLCKS
IDIFF = IWORK(MUK+I-1) - IWORK(NUK+I-1)
GAM(I) = IDIFF
IWORK(I) = NCV
NCV = NCV + I*IDIFF
IWORK(TAIL+I-1) = IWORK(TAIL+I-2) + IWORK(MUK+I-1)
20 CONTINUE
C
C Determine a basis for the right nullspace of the polynomial
C matrix P(s). This basis is stored in array NULLSP in condensed
C form.
C
CALL DLASET( 'Full', NP, NCV, ZERO, ZERO, NULLSP, LDNULL )
C
C |VEPS(s)|
C The last NP rows of the product matrix Z x |-------| contain the
C | 0 |
C polynomial basis for the right nullspace of the polynomial matrix
C P(s) in condensed form. The multiplication is restricted to the
C nonzero submatrices Vij,k of VEPS, the result is stored in the
C array NULLSP.
C
VC1 = 1
C
DO 60 I = 1, NBLCKS
VR2 = IWORK(TAIL+I-1)
C
DO 40 J = 1, I
C
C Multiplication of Z(H+1:N,1:VR2) with V.i,j-1 stored in
C VEPS(1:VR2,VC1:VC1+GAM(I)-1).
C
CALL DGEMM( 'No transpose', 'No transpose', NP, GAM(I), VR2,
$ ONE, DWORK(JWORKZ+H), N,
$ DWORK(JWORKV+(VC1-1)*N), N, ZERO, NULLSP(1,VC1),
$ LDNULL )
VC1 = VC1 + GAM(I)
VR2 = VR2 - IWORK(MUK+I-J)
40 CONTINUE
C
60 CONTINUE
C
C Transfer of the columns of NULLSP to KER in order to obtain the
C polynomial matrix representation of K(s), the right nullspace
C of P(s).
C
SGAMK = 1
C
DO 100 K = 1, NBLCKS
CALL DLASET( 'Full', NP, SGAMK-1, ZERO, ZERO, KER(1,1,K),
$ LDKER1 )
IFIR = SGAMK
C
C Copy the appropriate columns of NULLSP into KER(k).
C SGAMK = 1 + SUM(i=1,..,k-1) GAM(i), is the first nontrivial
C column of KER(k), the first SGAMK - 1 columns of KER(k) are
C zero. IFIR denotes the position of the first column in KER(k)
C in the set of columns copied for a value of J.
C VC1 is the first column of NULLSP to be copied.
C
DO 80 J = K, NBLCKS
GAMJ = GAM(J)
VC1 = IWORK(J) + (K-1)*GAMJ + 1
CALL DLACPY( 'Full', NP, GAMJ, NULLSP(1,VC1), LDNULL,
$ KER(1,IFIR,K), LDKER1 )
IFIR = IFIR + GAMJ
80 CONTINUE
C
SGAMK = SGAMK + GAM(K)
100 CONTINUE
C
RETURN
C *** Last line of MC03ND ***
END
|