1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
SUBROUTINE MC03NX( MP, NP, DP, P, LDP1, LDP2, A, LDA, E, LDE )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C Given an MP-by-NP polynomial matrix of degree dp
C dp-1 dp
C P(s) = P(0) + ... + P(dp-1) * s + P(dp) * s (1)
C
C the routine composes the related pencil s*E-A where
C
C | I | | O -P(dp) |
C | . | | I . . |
C A = | . | and E = | . . . |. (2)
C | . | | . O . |
C | I | | I O -P(2) |
C | P(0) | | I -P(1) |
C
C ==================================================================
C REMARK: This routine is intended to be called only from the SLICOT
C routine MC03ND.
C ==================================================================
C
C ARGUMENTS
C
C Input/Output Parameters
C
C MP (input) INTEGER
C The number of rows of the polynomial matrix P(s).
C MP >= 0.
C
C NP (input) INTEGER
C The number of columns of the polynomial matrix P(s).
C NP >= 0.
C
C DP (input) INTEGER
C The degree of the polynomial matrix P(s). DP >= 1.
C
C P (input) DOUBLE PRECISION array, dimension (LDP1,LDP2,DP+1)
C The leading MP-by-NP-by-(DP+1) part of this array must
C contain the coefficients of the polynomial matrix P(s)
C in (1) in increasing powers of s.
C
C LDP1 INTEGER
C The leading dimension of array P. LDP1 >= MAX(1,MP).
C
C LDP2 INTEGER
C The second dimension of array P. LDP2 >= MAX(1,NP).
C
C A (output) DOUBLE PRECISION array, dimension
C (LDA,(DP-1)*MP+NP)
C The leading DP*MP-by-((DP-1)*MP+NP) part of this array
C contains the matrix A as described in (2).
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,DP*MP).
C
C E (output) DOUBLE PRECISION array, dimension
C (LDE,(DP-1)*MP+NP)
C The leading DP*MP-by-((DP-1)*MP+NP) part of this array
C contains the matrix E as described in (2).
C
C LDE INTEGER
C The leading dimension of array E. LDE >= MAX(1,DP*MP).
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC03BX by G.J.H.H. van den Hurk.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary polynomial operations, input output description,
C polynomial matrix, polynomial operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER DP, LDA, LDE, LDP1, LDP2, MP, NP
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), E(LDE,*), P(LDP1,LDP2,*)
C .. Local Scalars ..
INTEGER H1, HB, HE, HI, J, K
C .. External Subroutines ..
EXTERNAL DLACPY, DLASET, DSCAL
C .. Executable Statements ..
C
IF ( MP.LE.0 .OR. NP.LE.0 )
$ RETURN
C
C Initialisation of matrices A and E.
C
H1 = DP*MP
HB = H1 - MP
HE = HB + NP
CALL DLASET( 'Full', H1, HE, ZERO, ONE, A, LDA )
CALL DLASET( 'Full', MP, HB, ZERO, ZERO, E, LDE )
CALL DLACPY( 'Full', HB, HB, A, LDA, E(MP+1,1), LDE )
C
C Insert the matrices P(0), P(1), ..., P(dp) at the right places
C in the matrices A and E.
C
HB = HB + 1
CALL DLACPY( 'Full', MP, NP, P(1,1,1), LDP1, A(HB,HB), LDA )
HI = 1
C
DO 20 K = DP + 1, 2, -1
CALL DLACPY( 'Full', MP, NP, P(1,1,K), LDP1, E(HI,HB), LDE )
HI = HI + MP
20 CONTINUE
C
DO 40 J = HB, HE
CALL DSCAL( H1, -ONE, E(1,J), 1 )
40 CONTINUE
C
RETURN
C *** Last line of MC03NX ***
END
|