1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
SUBROUTINE MC03NY( NBLCKS, NRA, NCA, A, LDA, E, LDE, IMUK, INUK,
$ VEPS, LDVEPS, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To determine a minimal basis of the right nullspace of the
C subpencil s*E(eps)-A(eps) using the method given in [1] (see
C Eqs.(4.6.8), (4.6.9)).
C This pencil only contains Kronecker column indices, and it must be
C in staircase form as supplied by SLICOT Library Routine MB04VD.
C The basis vectors are represented by matrix V(s) having the form
C
C | V11(s) V12(s) V13(s) . . V1n(s) |
C | V22(s) V23(s) V2n(s) |
C | V33(s) . |
C V(s) = | . . |
C | . . |
C | . . |
C | Vnn(s) |
C
C where n is the number of full row rank blocks in matrix A(eps) and
C
C k j-i
C Vij(s) = Vij,0 + Vij,1*s +...+ Vij,k*s +...+ Vij,j-i*s . (1)
C
C In other words, Vij,k is the coefficient corresponding to degree k
C in the matrix polynomial Vij(s).
C Vij,k has dimensions mu(i)-by-(mu(j)-nu(j)).
C The coefficients Vij,k are stored in the matrix VEPS as follows
C (for the case n = 3):
C
C sizes m1-n1 m2-n2 m2-n2 m3-n3 m3-n3 m3-n3
C
C m1 { | V11,0 || V12,0 | V12,1 || V13,0 | V13,1 | V13,2 ||
C | || | || | | ||
C VEPS = m2 { | || V22,0 | || V23,0 | V23,1 | ||
C | || | || | | ||
C m3 { | || | || V33,0 | | ||
C
C where mi = mu(i), ni = nu(i).
C Matrix VEPS has dimensions nrv-by-ncv where
C nrv = Sum(i=1,...,n) mu(i)
C ncv = Sum(i=1,...,n) i*(mu(i)-nu(i))
C
C ==================================================================
C REMARK: This routine is intended to be called only from the SLICOT
C routine MC03ND.
C ==================================================================
C
C ARGUMENTS
C
C Input/Output Parameters
C
C NBLCKS (input) INTEGER
C Number of full row rank blocks in subpencil
C s*E(eps)-A(eps) that contains all Kronecker column indices
C of s*E-A. NBLCKS >= 0.
C
C NRA (input) INTEGER
C Number of rows of the subpencil s*E(eps)-A(eps) in s*E-A.
C NRA = nu(1) + nu(2) + ... + nu(NBLCKS). NRA >= 0.
C
C NCA (input) INTEGER
C Number of columns of the subpencil s*E(eps)-A(eps) in
C s*E-A.
C NCA = mu(1) + mu(2) + ... + mu(NBLCKS). NCA >= 0.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,NCA)
C E (input/output) DOUBLE PRECISION array, dimension (LDE,NCA)
C On entry, the leading NRA-by-NCA part of these arrays must
C contain the matrices A and E, where s*E-A is the
C transformed pencil s*E0-A0 which is the pencil associated
C with P(s) as described in [1] Section 4.6. The pencil
C s*E-A is assumed to be in generalized Schur form.
C On exit, these arrays contain no useful information.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,NRA).
C
C LDE INTEGER
C The leading dimension of array E. LDE >= MAX(1,NRA).
C
C IMUK (input) INTEGER array, dimension (NBLCKS)
C This array must contain the column dimensions mu(k) of the
C full column rank blocks in the subpencil s*E(eps)-A(eps)
C of s*E-A. The content of IMUK is modified by the routine
C but restored on exit.
C
C INUK (input) INTEGER array, dimension (NBLCKS)
C This array must contain the row dimensions nu(k) of the
C full row rank blocks in the subpencil s*E(eps)-A(eps) of
C s*E-A.
C
C VEPS (output) DOUBLE PRECISION array, dimension (LDVEPS,ncv)
C Let nrv = Sum(i=1,...,NBLCKS) mu(i) = NCA,
C ncv = Sum(i=1,...,NBLCKS) i*(mu(i)-nu(i)).
C The leading nrv-by-ncv part of this array contains the
C column vectors of a minimal polynomial basis for the right
C nullspace of the subpencil s*E(eps)-A(eps). (See [1]
C Section 4.6.4.) An upper bound for ncv is (NRA+1)*NCA.
C
C LDVEPS INTEGER
C The leading dimension of array VEPS.
C LDVEPS >= MAX(1,NCA).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = k, the k-th diagonal block of A had not a
C full row rank.
C
C REFERENCES
C
C [1] Th.G.J. Beelen, New Algorithms for Computing the Kronecker
C structure of a Pencil with Applications to Systems and
C Control Theory.
C Ph.D.Thesis, Eindhoven University of Technology, 1987.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Mar. 1997.
C Supersedes Release 2.0 routine MC03BY by Th.G.J. Beelen,
C A.J. Geurts, and G.J.H.H. van den Hurk.
C
C REVISIONS
C
C Dec. 1997.
C
C KEYWORDS
C
C Elementary polynomial operations, Kronecker form, polynomial
C matrix, polynomial operations, staircase form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDE, LDVEPS, NBLCKS, NCA, NRA
C .. Array Arguments ..
INTEGER IMUK(*), INUK(*)
DOUBLE PRECISION A(LDA,*), E(LDE,*), VEPS(LDVEPS,*)
C .. Local Scalars ..
INTEGER AC1, AC2, AR1, ARI, ARK, DIF, EC1, ER1, I, J, K,
$ MUI, NCV, NRV, NUI, SMUI, SMUI1, VC1, VC2, VR1,
$ VR2, WC1, WR1
C .. Local Arrays ..
DOUBLE PRECISION DUMMY(1)
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DLASET, DSCAL, DTRTRS, XERBLA
C .. Executable Statements ..
C
INFO = 0
IF( NBLCKS.LT.0 ) THEN
INFO = -1
ELSE IF( NRA.LT.0 ) THEN
INFO = -2
ELSE IF( NCA.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, NRA ) ) THEN
INFO = -5
ELSE IF( LDE.LT.MAX( 1, NRA ) ) THEN
INFO = -7
ELSE IF( LDVEPS.LT.MAX( 1, NCA ) ) THEN
INFO = -11
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MC03NY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( NBLCKS.EQ.0 .OR. NRA.EQ.0 .OR. NCA.EQ.0 )
$ RETURN
C
C Computation of the nonzero parts of W1 and W2:
C
C | AH11 AH12 ... AH1n | | EH11 EH12 ... EH1n |
C | AH22 AH2n | | EH22 EH2n |
C W1 = | . . |, W2 = | . . |
C | . . | | . . |
C | AHnn | | EHnn |
C
C with AHij = -pinv(Aii) * Aij, EHij = pinv(Aii) * Eij and EHii = 0,
C AHij and EHij have dimensions mu(i)-by-mu(j), Aii = [ Oi | Ri ],
C and
C Ri is a regular nu(i)-by-nu(i) upper triangular matrix;
C Oi is a not necessarily square null matrix.
C Note that the first mu(i)-nu(i) rows in AHij and EHij are zero.
C For memory savings, the nonzero parts of W1 and W2 are constructed
C over A and E, respectively.
C
C (AR1,AC1) denotes the position of the first element of the
C submatrix Ri in matrix Aii.
C EC1 is the index of the first column of Ai,i+1/Ei,i+1.
C
EC1 = 1
AR1 = 1
C
DO 40 I = 1, NBLCKS - 1
NUI = INUK(I)
IF ( NUI.EQ.0 ) GO TO 60
MUI = IMUK(I)
EC1 = EC1 + MUI
AC1 = EC1 - NUI
CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', NUI,
$ NCA-EC1+1, A(AR1,AC1), LDA, E(AR1,EC1), LDE,
$ INFO )
IF ( INFO.GT.0 ) THEN
INFO = I
RETURN
END IF
C
DO 20 J = 1, NUI
CALL DSCAL( J, -ONE, A(AR1,AC1+J-1), 1 )
20 CONTINUE
C
CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', NUI,
$ NCA-EC1+1, A(AR1,AC1), LDA, A(AR1,EC1), LDA,
$ INFO )
AR1 = AR1 + NUI
40 CONTINUE
C
60 CONTINUE
C
C The contents of the array IMUK is changed for temporary use in
C this routine as follows:
C
C IMUK(i) = Sum(j=1,...,i) mu(j).
C
C On return, the original contents of IMUK is restored.
C In the same loop the actual number of columns of VEPS is computed.
C The number of rows of VEPS is NCA.
C
C NRV = Sum(i=1,...,NBLCKS) mu(i) = NCA,
C NCV = Sum(i=1,...,NBLCKS) i*(mu(i)-nu(i)).
C
SMUI = 0
NCV = 0
C
DO 80 I = 1, NBLCKS
MUI = IMUK(I)
SMUI = SMUI + MUI
IMUK(I) = SMUI
NCV = NCV + I*( MUI - INUK(I) )
80 CONTINUE
C
NRV = NCA
C
C Computation of the matrix VEPS.
C
C Initialisation of VEPS to zero.
C
CALL DLASET( 'Full', NRV, NCV, ZERO, ZERO, VEPS, LDVEPS )
C | I |
C Set Vii,0 = Kii in VEPS , i=1,...,NBLCKS, where Kii = |---|
C | O |
C and I is an identity matrix of size mu(i)-nu(i),
C O is a null matrix, dimensions nu(i)-by-(mu(i)-nu(i)).
C
C WR1 := Sum(j=1,...,i-1) mu(j) + 1
C is the index of the first row in Vii,0 in VEPS.
C WC1 := Sum(j=1,...,i-1) j*(mu(j)-nu(j)) + 1
C is the index of the first column in Vii,0 in VEPS.
C
DUMMY(1) = ONE
NUI = IMUK(1) - INUK(1)
CALL DCOPY( NUI, DUMMY, 0, VEPS, LDVEPS+1 )
WR1 = IMUK(1) + 1
WC1 = NUI + 1
C
DO 100 I = 2, NBLCKS
NUI = IMUK(I) - IMUK(I-1) - INUK(I)
CALL DCOPY( NUI, DUMMY, 0, VEPS(WR1,WC1), LDVEPS+1 )
WR1 = IMUK(I) + 1
WC1 = WC1 + I*NUI
100 CONTINUE
C
C Determination of the remaining nontrivial matrices in Vij,k
C block column by block column with decreasing block row index.
C
C The computation starts with the second block column since V11,0
C has already been determined.
C The coefficients Vij,k satisfy the recurrence relation:
C
C Vij,k = Sum(r=i+1,...,j-k) AHir*Vrj,k +
C + Sum(r=i+1,...,j-k+1) EHir*Vrj,k-1, i + k < j,
C
C = EHi,i+1 * Vi+1,j,k-1 i + k = j.
C
C This recurrence relation can be derived from [1], (4.6.8)
C and formula (1) in Section PURPOSE.
C
VC1 = IMUK(1) - INUK(1) + 1
ARI = 1
C
DO 180 J = 2, NBLCKS
DIF = IMUK(J) - IMUK(J-1) - INUK(J)
ARI = ARI + INUK(J-1)
ARK = ARI
C
C Computation of the matrices Vij,k where i + k < j.
C Each matrix Vij,k has dimension mu(i)-by-(mu(j) - nu(j)).
C
DO 160 K = 0, J - 2
C
C VC1, VC2 are the first and last column index of Vij,k.
C
VC2 = VC1 + DIF - 1
AC2 = IMUK(J-K)
AR1 = ARK
ARK = ARK - INUK(J-K-1)
C
DO 120 I = J - K - 1, 1, -1
C
C Compute the first part of Vij,k in decreasing order:
C Vij,k := Vij,k + Sum(r=i+1,..,j-k) AHir*Vrj,k.
C The non-zero parts of AHir are stored in
C A(AR1:AR1+nu(i)-1,AC1:AC2) and Vrj,k are stored in
C VEPS(AC1:AC2,VC1:VC2).
C The non-zero part of the result is stored in
C VEPS(VR1:VR2,VC1:VC2).
C
VR2 = IMUK(I)
AC1 = VR2 + 1
VR1 = AC1 - INUK(I)
AR1 = AR1 - INUK(I)
CALL DGEMM( 'No transpose', 'No transpose', INUK(I),
$ DIF, AC2-VR2, ONE, A(AR1,AC1), LDA,
$ VEPS(AC1,VC1), LDVEPS, ONE, VEPS(VR1,VC1),
$ LDVEPS )
120 CONTINUE
C
ER1 = 1
C
DO 140 I = 1, J - K - 1
C
C Compute the second part of Vij,k+1 in normal order:
C Vij,k+1 := Sum(r=i+1,..,j-k) EHir*Vrj,k.
C The non-zero parts of EHir are stored in
C E(ER1:ER1+nu(i)-1,EC1:AC2) and Vrj,k are stored in
C VEPS(EC1:AC2,VC1:VC2).
C The non-zero part of the result is stored in
C VEPS(VR1:VR2,VC2+1:VC2+DIF), where
C DIF = VC2 - VC1 + 1 = mu(j) - nu(j).
C This code portion also computes Vij,k+1 for i + k = j.
C
VR2 = IMUK(I)
EC1 = VR2 + 1
VR1 = EC1 - INUK(I)
CALL DGEMM( 'No transpose', 'No transpose', INUK(I),
$ DIF, AC2-VR2, ONE, E(ER1,EC1), LDE,
$ VEPS(EC1,VC1), LDVEPS, ZERO, VEPS(VR1,VC2+1),
$ LDVEPS )
ER1 = ER1 + INUK(I)
140 CONTINUE
C
VC1 = VC2 + 1
160 CONTINUE
C
VC1 = VC1 + DIF
180 CONTINUE
C
C Restore original contents of the array IMUK.
C
C Since, at the moment:
C IMUK(i) = Sum(j=1,...,i) mu(j), (i=1,...,NBLCKS),
C the original values are:
C mu(i) = IMUK(i) - IMUK(i-1) with IMUK(0 ) = 0.
C
SMUI1 = 0
C
DO 200 I = 1, NBLCKS
SMUI = IMUK(I)
IMUK(I) = SMUI - SMUI1
SMUI1 = SMUI
200 CONTINUE
C
RETURN
C *** Last line of MC03NY ***
END
|