1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
|
SUBROUTINE MD03AD( XINIT, ALG, STOR, UPLO, FCN, JPJ, M, N, ITMAX,
$ NPRINT, IPAR, LIPAR, DPAR1, LDPAR1, DPAR2,
$ LDPAR2, X, NFEV, NJEV, TOL, CGTOL, DWORK,
$ LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To minimize the sum of the squares of m nonlinear functions, e, in
C n variables, x, by a modification of the Levenberg-Marquardt
C algorithm, using either a Cholesky-based or a conjugate gradients
C solver. The user must provide a subroutine FCN which calculates
C the functions and the Jacobian J (possibly by finite differences),
C and another subroutine JPJ, which computes either J'*J + par*I
C (if ALG = 'D'), or (J'*J + par*I)*x (if ALG = 'I'), where par is
C the Levenberg factor, exploiting the possible structure of the
C Jacobian matrix. Template implementations of these routines are
C included in the SLICOT Library.
C
C ARGUMENTS
C
C Mode Parameters
C
C XINIT CHARACTER*1
C Specifies how the variables x are initialized, as follows:
C = 'R' : the array X is initialized to random values; the
C entries DWORK(1:4) are used to initialize the
C random number generator: the first three values
C are converted to integers between 0 and 4095, and
C the last one is converted to an odd integer
C between 1 and 4095;
C = 'G' : the given entries of X are used as initial values
C of variables.
C
C ALG CHARACTER*1
C Specifies the algorithm used for solving the linear
C systems involving a Jacobian matrix J, as follows:
C = 'D' : a direct algorithm, which computes the Cholesky
C factor of the matrix J'*J + par*I is used;
C = 'I' : an iterative Conjugate Gradients algorithm, which
C only needs the matrix J, is used.
C In both cases, matrix J is stored in a compressed form.
C
C STOR CHARACTER*1
C If ALG = 'D', specifies the storage scheme for the
C symmetric matrix J'*J, as follows:
C = 'F' : full storage is used;
C = 'P' : packed storage is used.
C The option STOR = 'F' usually ensures a faster execution.
C This parameter is not relevant if ALG = 'I'.
C
C UPLO CHARACTER*1
C If ALG = 'D', specifies which part of the matrix J'*J
C is stored, as follows:
C = 'U' : the upper triagular part is stored;
C = 'L' : the lower triagular part is stored.
C The option UPLO = 'U' usually ensures a faster execution.
C This parameter is not relevant if ALG = 'I'.
C
C Function Parameters
C
C FCN EXTERNAL
C Subroutine which evaluates the functions and the Jacobian.
C FCN must be declared in an external statement in the user
C calling program, and must have the following interface:
C
C SUBROUTINE FCN( IFLAG, M, N, IPAR, LIPAR, DPAR1, LDPAR1,
C $ DPAR2, LDPAR2, X, NFEVL, E, J, LDJ, JTE,
C $ DWORK, LDWORK, INFO )
C
C where
C
C IFLAG (input/output) INTEGER
C On entry, this parameter must contain a value
C defining the computations to be performed:
C = 0 : Optionally, print the current iterate X,
C function values E, and Jacobian matrix J,
C or other results defined in terms of these
C values. See the argument NPRINT of MD03AD.
C Do not alter E and J.
C = 1 : Calculate the functions at X and return
C this vector in E. Do not alter J.
C = 2 : Calculate the Jacobian at X and return
C this matrix in J. Also return J'*e in JTE
C and NFEVL (see below). Do not alter E.
C = 3 : Do not compute neither the functions nor
C the Jacobian, but return in LDJ and
C IPAR/DPAR1,DPAR2 (some of) the integer/real
C parameters needed.
C On exit, the value of this parameter should not be
C changed by FCN unless the user wants to terminate
C execution of MD03AD, in which case IFLAG must be
C set to a negative integer.
C
C M (input) INTEGER
C The number of functions. M >= 0.
C
C N (input) INTEGER
C The number of variables. M >= N >= 0.
C
C IPAR (input/output) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of
C the Jacobian matrix or needed for problem solving.
C IPAR is an input parameter, except for IFLAG = 3
C on entry, when it is also an output parameter.
C On exit, if IFLAG = 3, IPAR(1) contains the length
C of the array J, for storing the Jacobian matrix,
C and the entries IPAR(2:5) contain the workspace
C required by FCN for IFLAG = 1, FCN for IFLAG = 2,
C JPJ for ALG = 'D', and JPJ for ALG = 'I',
C respectively.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 5.
C
C DPAR1 (input/output) DOUBLE PRECISION array, dimension
C (LDPAR1,*) or (LDPAR1)
C A first set of real parameters needed for
C describing or solving the problem.
C DPAR1 can also be used as an additional array for
C intermediate results when computing the functions
C or the Jacobian. For control problems, DPAR1 could
C store the input trajectory of a system.
C
C LDPAR1 (input) INTEGER
C The leading dimension or the length of the array
C DPAR1, as convenient. LDPAR1 >= 0. (LDPAR1 >= 1,
C if leading dimension.)
C
C DPAR2 (input/output) DOUBLE PRECISION array, dimension
C (LDPAR2,*) or (LDPAR2)
C A second set of real parameters needed for
C describing or solving the problem.
C DPAR2 can also be used as an additional array for
C intermediate results when computing the functions
C or the Jacobian. For control problems, DPAR2 could
C store the output trajectory of a system.
C
C LDPAR2 (input) INTEGER
C The leading dimension or the length of the array
C DPAR2, as convenient. LDPAR2 >= 0. (LDPAR2 >= 1,
C if leading dimension.)
C
C X (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the value of the
C variables x where the functions or the Jacobian
C must be evaluated.
C
C NFEVL (input/output) INTEGER
C The number of function evaluations needed to
C compute the Jacobian by a finite difference
C approximation.
C NFEVL is an input parameter if IFLAG = 0, or an
C output parameter if IFLAG = 2. If the Jacobian is
C computed analytically, NFEVL should be set to a
C non-positive value.
C
C E (input/output) DOUBLE PRECISION array,
C dimension (M)
C This array contains the value of the (error)
C functions e evaluated at X.
C E is an input parameter if IFLAG = 0 or 2, or an
C output parameter if IFLAG = 1.
C
C J (input/output) DOUBLE PRECISION array, dimension
C (LDJ,NC), where NC is the number of columns
C needed.
C This array contains a possibly compressed
C representation of the Jacobian matrix evaluated
C at X. If full Jacobian is stored, then NC = N.
C J is an input parameter if IFLAG = 0, or an output
C parameter if IFLAG = 2.
C
C LDJ (input/output) INTEGER
C The leading dimension of array J. LDJ >= 1.
C LDJ is essentially used inside the routines FCN
C and JPJ.
C LDJ is an input parameter, except for IFLAG = 3
C on entry, when it is an output parameter.
C It is assumed in MD03AD that LDJ is not larger
C than needed.
C
C JTE (output) DOUBLE PRECISION array, dimension (N)
C If IFLAG = 2, the matrix-vector product J'*e.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C The workspace array for subroutine FCN.
C On exit, if INFO = 0, DWORK(1) returns the optimal
C value of LDWORK.
C
C LDWORK (input) INTEGER
C The size of the array DWORK (as large as needed
C in the subroutine FCN). LDWORK >= 1.
C
C INFO INTEGER
C Error indicator, set to a negative value if an
C input (scalar) argument is erroneous, and to
C positive values for other possible errors in the
C subroutine FCN. The LAPACK Library routine XERBLA
C should be used in conjunction with negative INFO.
C INFO must be zero if the subroutine finished
C successfully.
C
C Parameters marked with "(input)" must not be changed.
C
C JPJ EXTERNAL
C Subroutine which computes J'*J + par*I, if ALG = 'D', and
C J'*J*x + par*x, if ALG = 'I', where J is the Jacobian as
C described above.
C
C JPJ must have the following interface:
C
C SUBROUTINE JPJ( STOR, UPLO, N, IPAR, LIPAR, DPAR, LDPAR,
C $ J, LDJ, JTJ, LDJTJ, DWORK, LDWORK, INFO )
C
C if ALG = 'D', and
C
C SUBROUTINE JPJ( N, IPAR, LIPAR, DPAR, LDPAR, J, LDJ, X,
C $ INCX, DWORK, LDWORK, INFO )
C
C if ALG = 'I', where
C
C STOR (input) CHARACTER*1
C Specifies the storage scheme for the symmetric
C matrix J'*J, as follows:
C = 'F' : full storage is used;
C = 'P' : packed storage is used.
C
C UPLO (input) CHARACTER*1
C Specifies which part of the matrix J'*J is stored,
C as follows:
C = 'U' : the upper triagular part is stored;
C = 'L' : the lower triagular part is stored.
C
C N (input) INTEGER
C The number of columns of the matrix J. N >= 0.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of
C the Jacobian matrix.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 0.
C
C DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
C DPAR(1) must contain an initial estimate of the
C Levenberg-Marquardt parameter, par. DPAR(1) >= 0.
C
C LDPAR (input) INTEGER
C The length of the array DPAR. LDPAR >= 1.
C
C J (input) DOUBLE PRECISION array, dimension
C (LDJ, NC), where NC is the number of columns.
C The leading NR-by-NC part of this array must
C contain the (compressed) representation of the
C Jacobian matrix J, where NR is the number of rows
C of J (function of IPAR entries).
C
C LDJ (input) INTEGER
C The leading dimension of array J.
C LDJ >= MAX(1,NR).
C
C JTJ (output) DOUBLE PRECISION array,
C dimension (LDJTJ,N), if STOR = 'F',
C dimension (N*(N+1)/2), if STOR = 'P'.
C The leading N-by-N (if STOR = 'F'), or N*(N+1)/2
C (if STOR = 'P') part of this array contains the
C upper or lower triangle of the matrix J'*J+par*I,
C depending on UPLO = 'U', or UPLO = 'L',
C respectively, stored either as a two-dimensional,
C or one-dimensional array, depending on STOR.
C
C LDJTJ (input) INTEGER
C The leading dimension of the array JTJ.
C LDJTJ >= MAX(1,N), if STOR = 'F'.
C LDJTJ >= 1, if STOR = 'P'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C The workspace array for subroutine JPJ.
C
C LDWORK (input) INTEGER
C The size of the array DWORK (as large as needed
C in the subroutine JPJ).
C
C INFO INTEGER
C Error indicator, set to a negative value if an
C input (scalar) argument is erroneous, and to
C positive values for other possible errors in the
C subroutine JPJ. The LAPACK Library routine XERBLA
C should be used in conjunction with negative INFO
C values. INFO must be zero if the subroutine
C finished successfully.
C
C If ALG = 'I', the parameters in common with those for
C ALG = 'D', have the same meaning, and the additional
C parameters are:
C
C X (input/output) DOUBLE PRECISION array, dimension
C (1+(N-1)*INCX)
C On entry, this incremented array must contain the
C vector x.
C On exit, this incremented array contains the value
C of the matrix-vector product (J'*J + par)*x.
C
C INCX (input) INTEGER
C The increment for the elements of X. INCX > 0.
C
C Parameters marked with "(input)" must not be changed.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of functions. M >= 0.
C
C N (input) INTEGER
C The number of variables. M >= N >= 0.
C
C ITMAX (input) INTEGER
C The maximum number of iterations. ITMAX >= 0.
C
C NPRINT (input) INTEGER
C This parameter enables controlled printing of iterates if
C it is positive. In this case, FCN is called with IFLAG = 0
C at the beginning of the first iteration and every NPRINT
C iterations thereafter and immediately prior to return,
C with X, E, and J available for printing. If NPRINT is not
C positive, no special calls of FCN with IFLAG = 0 are made.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters needed, for instance, for
C describing the structure of the Jacobian matrix, which
C are handed over to the routines FCN and JPJ.
C The first five entries of this array are modified
C internally by a call to FCN (with IFLAG = 3), but are
C restored on exit.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 5.
C
C DPAR1 (input/output) DOUBLE PRECISION array, dimension
C (LDPAR1,*) or (LDPAR1)
C A first set of real parameters needed for describing or
C solving the problem. This argument is not used by MD03AD
C routine, but it is passed to the routine FCN.
C
C LDPAR1 (input) INTEGER
C The leading dimension or the length of the array DPAR1, as
C convenient. LDPAR1 >= 0. (LDPAR1 >= 1, if leading
C dimension.)
C
C DPAR2 (input/output) DOUBLE PRECISION array, dimension
C (LDPAR2,*) or (LDPAR2)
C A second set of real parameters needed for describing or
C solving the problem. This argument is not used by MD03AD
C routine, but it is passed to the routine FCN.
C
C LDPAR2 (input) INTEGER
C The leading dimension or the length of the array DPAR2, as
C convenient. LDPAR2 >= 0. (LDPAR2 >= 1, if leading
C dimension.)
C
C X (input/output) DOUBLE PRECISION array, dimension (N)
C On entry, if XINIT = 'G', this array must contain the
C vector of initial variables x to be optimized.
C If XINIT = 'R', this array need not be set before entry,
C and random values will be used to initialize x.
C On exit, if INFO = 0, this array contains the vector of
C values that (approximately) minimize the sum of squares of
C error functions. The values returned in IWARN and
C DWORK(1:5) give details on the iterative process.
C
C NFEV (output) INTEGER
C The number of calls to FCN with IFLAG = 1. If FCN is
C properly implemented, this includes the function
C evaluations needed for finite difference approximation
C of the Jacobian.
C
C NJEV (output) INTEGER
C The number of calls to FCN with IFLAG = 2.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If TOL >= 0, the tolerance which measures the relative
C error desired in the sum of squares. Termination occurs
C when the actual relative reduction in the sum of squares
C is at most TOL. If the user sets TOL < 0, then SQRT(EPS)
C is used instead TOL, where EPS is the machine precision
C (see LAPACK Library routine DLAMCH).
C
C CGTOL DOUBLE PRECISION
C If ALG = 'I' and CGTOL > 0, the tolerance which measures
C the relative residual of the solutions computed by the
C conjugate gradients (CG) algorithm. Termination of a
C CG process occurs when the relative residual is at
C most CGTOL. If the user sets CGTOL <= 0, then SQRT(EPS)
C is used instead CGTOL.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK, DWORK(2) returns the residual error norm (the
C sum of squares), DWORK(3) returns the number of iterations
C performed, DWORK(4) returns the total number of conjugate
C gradients iterations performed (zero, if ALG = 'D'), and
C DWORK(5) returns the final Levenberg factor.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= max( 5, M + 2*N + size(J) +
C max( DW( FCN|IFLAG = 1 ) + N,
C DW( FCN|IFLAG = 2 ),
C DW( sol ) ) ),
C where size(J) is the size of the Jacobian (provided by FCN
C in IPAR(1), for IFLAG = 3), DW( f ) is the workspace
C needed by the routine f, where f is FCN or JPJ (provided
C by FCN in IPAR(2:5), for IFLAG = 3), and DW( sol ) is the
C workspace needed for solving linear systems,
C DW( sol ) = N*N + DW( JPJ ), if ALG = 'D', STOR = 'F';
C DW( sol ) = N*(N+1)/2 + DW( JPJ ),
C if ALG = 'D', STOR = 'P';
C DW( sol ) = 3*N + DW( JPJ ), if ALG = 'I'.
C
C Warning Indicator
C
C IWARN INTEGER
C < 0: the user set IFLAG = IWARN in the subroutine FCN;
C = 0: no warning;
C = 1: if the iterative process did not converge in ITMAX
C iterations with tolerance TOL;
C = 2: if ALG = 'I', and in one or more iterations of the
C Levenberg-Marquardt algorithm, the conjugate
C gradient algorithm did not finish after 3*N
C iterations, with the accuracy required in the
C call;
C = 3: the cosine of the angle between e and any column of
C the Jacobian is at most FACTOR*EPS in absolute
C value, where FACTOR = 100 is defined in a PARAMETER
C statement;
C = 4: TOL is too small: no further reduction in the sum
C of squares is possible.
C In all these cases, DWORK(1:5) are set as described
C above.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: user-defined routine FCN returned with INFO <> 0
C for IFLAG = 1;
C = 2: user-defined routine FCN returned with INFO <> 0
C for IFLAG = 2;
C = 3: SLICOT Library routine MB02XD, if ALG = 'D', or
C SLICOT Library routine MB02WD, if ALG = 'I' (or
C user-defined routine JPJ), returned with INFO <> 0.
C
C METHOD
C
C If XINIT = 'R', the initial value for X is set to a vector of
C pseudo-random values uniformly distributed in [-1,1].
C
C The Levenberg-Marquardt algorithm (described in [1]) is used for
C optimizing the parameters. This algorithm needs the Jacobian
C matrix J, which is provided by the subroutine FCN. The algorithm
C tries to update x by the formula
C
C x = x - p,
C
C using the solution of the system of linear equations
C
C (J'*J + PAR*I)*p = J'*e,
C
C where I is the identity matrix, and e the error function vector.
C The Levenberg factor PAR is decreased after each successfull step
C and increased in the other case.
C
C If ALG = 'D', a direct method, which evaluates the matrix product
C J'*J + par*I and then factors it using Cholesky algorithm,
C implemented in the SLICOT Libray routine MB02XD, is used for
C solving the linear system above.
C
C If ALG = 'I', the Conjugate Gradients method, described in [2],
C and implemented in the SLICOT Libray routine MB02WD, is used for
C solving the linear system above. The main advantage of this method
C is that in most cases the solution of the system can be computed
C in less time than the time needed to compute the matrix J'*J
C This is, however, problem dependent.
C
C REFERENCES
C
C [1] Kelley, C.T.
C Iterative Methods for Optimization.
C Society for Industrial and Applied Mathematics (SIAM),
C Philadelphia (Pa.), 1999.
C
C [2] Golub, G.H. and van Loan, C.F.
C Matrix Computations. Third Edition.
C M. D. Johns Hopkins University Press, Baltimore, pp. 520-528,
C 1996.
C
C [3] More, J.J.
C The Levenberg-Marquardt algorithm: implementation and theory.
C In Watson, G.A. (Ed.), Numerical Analysis, Lecture Notes in
C Mathematics, vol. 630, Springer-Verlag, Berlin, Heidelberg
C and New York, pp. 105-116, 1978.
C
C NUMERICAL ASPECTS
C
C The Levenberg-Marquardt algorithm described in [3] is scaling
C invariant and globally convergent to (maybe local) minima.
C According to [1], the convergence rate near a local minimum is
C quadratic, if the Jacobian is computed analytically, and linear,
C if the Jacobian is computed numerically.
C
C Whether or not the direct algorithm is faster than the iterative
C Conjugate Gradients algorithm for solving the linear systems
C involved depends on several factors, including the conditioning
C of the Jacobian matrix, and the ratio between its dimensions.
C
C CONTRIBUTORS
C
C A. Riedel, R. Schneider, Chemnitz University of Technology,
C Oct. 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001,
C Mar. 2002.
C
C KEYWORDS
C
C Conjugate gradients, least-squares approximation,
C Levenberg-Marquardt algorithm, matrix operations, optimization.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, FOUR, FIVE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, FOUR = 4.0D0,
$ FIVE = 5.0D0 )
DOUBLE PRECISION FACTOR, MARQF, MINIMP, PARMAX
PARAMETER ( FACTOR = 10.0D0**2, MARQF = 2.0D0**2,
$ MINIMP = 2.0D0**(-3), PARMAX = 1.0D20 )
C .. Scalar Arguments ..
CHARACTER ALG, STOR, UPLO, XINIT
INTEGER INFO, ITMAX, IWARN, LDPAR1, LDPAR2, LDWORK,
$ LIPAR, M, N, NFEV, NJEV, NPRINT
DOUBLE PRECISION CGTOL, TOL
C .. Array Arguments ..
DOUBLE PRECISION DPAR1(LDPAR1,*), DPAR2(LDPAR2,*), DWORK(*), X(*)
INTEGER IPAR(*)
C .. Local Scalars ..
LOGICAL CHOL, FULL, INIT, UPPER
INTEGER DWJTJ, E, I, IFLAG, INFOL, ITER, ITERCG, IW1,
$ IW2, IWARNL, JAC, JTE, JW1, JW2, JWORK, LDJ,
$ LDW, LFCN1, LFCN2, LJTJ, LJTJD, LJTJI, NFEVL,
$ SIZEJ, WRKOPT
DOUBLE PRECISION ACTRED, BIGNUM, CGTDEF, EPSMCH, FNORM, FNORM1,
$ GNORM, GSMIN, PAR, SMLNUM, SQREPS, TOLDEF
C .. Local Arrays ..
INTEGER SEED(4)
C .. External Functions ..
DOUBLE PRECISION DDOT, DLAMCH, DNRM2
LOGICAL LSAME
EXTERNAL DDOT, DLAMCH, DNRM2, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DLABAD, DLARNV, FCN, JPJ, MB02WD, MB02XD,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN, MOD, SQRT
C ..
C .. Executable Statements ..
C
C Decode the scalar input parameters.
C
INIT = LSAME( XINIT, 'R' )
CHOL = LSAME( ALG, 'D' )
FULL = LSAME( STOR, 'F' )
UPPER = LSAME( UPLO, 'U' )
C
C Check the scalar input parameters.
C
IWARN = 0
INFO = 0
IF( .NOT.( INIT .OR. LSAME( XINIT, 'G' ) ) ) THEN
INFO = -1
ELSEIF ( .NOT.( CHOL .OR. LSAME( ALG, 'I' ) ) ) THEN
INFO = -2
ELSEIF ( CHOL .AND. .NOT.( FULL .OR. LSAME( STOR, 'P' ) ) ) THEN
INFO = -3
ELSEIF ( CHOL .AND. .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -4
ELSEIF ( M.LT.0 ) THEN
INFO = -7
ELSEIF ( N.LT.0 .OR. N.GT.M ) THEN
INFO = -8
ELSEIF ( ITMAX.LT.0 ) THEN
INFO = -9
ELSEIF ( LIPAR.LT.5 ) THEN
INFO = -12
ELSEIF( LDPAR1.LT.0 ) THEN
INFO = -14
ELSEIF( LDPAR2.LT.0 ) THEN
INFO = -16
ELSEIF ( LDWORK.LT.5 ) THEN
INFO = -23
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MD03AD', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
NFEV = 0
NJEV = 0
IF ( MIN( N, ITMAX ).EQ.0 ) THEN
DWORK(1) = FIVE
DWORK(2) = ZERO
DWORK(3) = ZERO
DWORK(4) = ZERO
DWORK(5) = ZERO
RETURN
ENDIF
C
C Call FCN to get the size of the array J, for storing the Jacobian
C matrix, the leading dimension LDJ and the workspace required
C by FCN for IFLAG = 1 and IFLAG = 2, and JPJ. The entries
C DWORK(1:4) should not be modified by the special call of FCN
C below, if XINIT = 'R' and the values in DWORK(1:4) are explicitly
C desired for initialization of the random number generator.
C
IFLAG = 3
IW1 = IPAR(1)
IW2 = IPAR(2)
JW1 = IPAR(3)
JW2 = IPAR(4)
LJTJ = IPAR(5)
C
CALL FCN( IFLAG, M, N, IPAR, LIPAR, DPAR1, LDPAR1, DPAR2, LDPAR2,
$ X, NFEVL, DWORK, DWORK, LDJ, DWORK, DWORK, LDWORK,
$ INFOL )
C
SIZEJ = IPAR(1)
LFCN1 = IPAR(2)
LFCN2 = IPAR(3)
LJTJD = IPAR(4)
LJTJI = IPAR(5)
C
IPAR(1) = IW1
IPAR(2) = IW2
IPAR(3) = JW1
IPAR(4) = JW2
IPAR(5) = LJTJ
C
C Define pointers to the array variables stored in DWORK.
C
JAC = 1
E = JAC + SIZEJ
JTE = E + M
IW1 = JTE + N
IW2 = IW1 + N
JW1 = IW2
JW2 = IW2 + N
C
C Check the workspace length.
C
JWORK = JW1
IF ( CHOL ) THEN
IF ( FULL ) THEN
LDW = N*N
ELSE
LDW = ( N*( N + 1 ) ) / 2
ENDIF
DWJTJ = JWORK
JWORK = DWJTJ + LDW
LJTJ = LJTJD
ELSE
LDW = 3*N
LJTJ = LJTJI
ENDIF
IF ( LDWORK.LT.MAX( 5, SIZEJ + M + 2*N +
$ MAX( LFCN1 + N, LFCN2, LDW + LJTJ ) ) )
$ THEN
INFO = -23
ENDIF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MD03AD', -INFO )
RETURN
ENDIF
C
C Set default tolerances. SQREPS is the square root of the machine
C precision, and GSMIN is used in the tests of the gradient norm.
C
EPSMCH = DLAMCH( 'Epsilon' )
SQREPS = SQRT( EPSMCH )
TOLDEF = TOL
IF ( TOLDEF.LT.ZERO )
$ TOLDEF = SQREPS
CGTDEF = CGTOL
IF ( CGTDEF.LE.ZERO )
$ CGTDEF = SQREPS
GSMIN = FACTOR*EPSMCH
WRKOPT = 5
C
SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
C
C Initialization.
C
IF ( INIT ) THEN
C
C SEED is the initial state of the random number generator.
C SEED(4) must be odd.
C
SEED(1) = MOD( INT( DWORK(1) ), 4096 )
SEED(2) = MOD( INT( DWORK(2) ), 4096 )
SEED(3) = MOD( INT( DWORK(3) ), 4096 )
SEED(4) = MOD( 2*INT( DWORK(4) ) + 1, 4096 )
CALL DLARNV( 2, SEED, N, X )
ENDIF
C
C Evaluate the function at the starting point and calculate
C its norm.
C Workspace: need: SIZEJ + M + 2*N + LFCN1;
C prefer: larger.
C
IFLAG = 1
CALL FCN( IFLAG, M, N, IPAR, LIPAR, DPAR1, LDPAR1, DPAR2, LDPAR2,
$ X, NFEVL, DWORK(E), DWORK(JAC), LDJ, DWORK(JTE),
$ DWORK(JW1), LDWORK-JW1+1, INFOL )
C
IF ( INFOL.NE.0 ) THEN
INFO = 1
RETURN
END IF
WRKOPT = MAX( WRKOPT, INT( DWORK(JW1) ) + JW1 - 1 )
NFEV = 1
FNORM = DNRM2( M, DWORK(E), 1 )
ACTRED = ZERO
ITERCG = 0
ITER = 0
IWARNL = 0
PAR = ZERO
IF ( IFLAG.LT.0 .OR. FNORM.EQ.ZERO )
$ GO TO 40
C
C Set the initial vector for the conjugate gradients algorithm.
C
DWORK(IW1) = ZERO
CALL DCOPY( N, DWORK(IW1), 0, DWORK(IW1), 1 )
C
C WHILE ( nonconvergence and ITER < ITMAX ) DO
C
C Beginning of the outer loop.
C
10 CONTINUE
C
C Calculate the Jacobian matrix.
C Workspace: need: SIZEJ + M + 2*N + LFCN2;
C prefer: larger.
C
ITER = ITER + 1
IFLAG = 2
CALL FCN( IFLAG, M, N, IPAR, LIPAR, DPAR1, LDPAR1, DPAR2,
$ LDPAR2, X, NFEVL, DWORK(E), DWORK(JAC), LDJ,
$ DWORK(JTE), DWORK(JW1), LDWORK-JW1+1, INFOL )
C
IF ( INFOL.NE.0 ) THEN
INFO = 2
RETURN
END IF
C
C Compute the gradient norm.
C
GNORM = DNRM2( N, DWORK(JTE), 1 )
IF ( NFEVL.GT.0 )
$ NFEV = NFEV + NFEVL
NJEV = NJEV + 1
IF ( GNORM.LE.GSMIN )
$ IWARN = 3
IF ( IWARN.NE.0 )
$ GO TO 40
IF ( ITER.EQ.1 ) THEN
WRKOPT = MAX( WRKOPT, INT( DWORK(JW1) ) + JW1 - 1 )
PAR = MIN( GNORM, SQRT( PARMAX ) )
END IF
IF ( IFLAG.LT.0 )
$ GO TO 40
C
C If requested, call FCN to enable printing of iterates.
C
IF ( NPRINT.GT.0 ) THEN
IFLAG = 0
IF ( MOD( ITER-1, NPRINT ).EQ.0 ) THEN
CALL FCN( IFLAG, M, N, IPAR, LIPAR, DPAR1, LDPAR1, DPAR2,
$ LDPAR2, X, NFEV, DWORK(E), DWORK(JAC), LDJ,
$ DWORK(JTE), DWORK(JW1), LDWORK-JW1+1, INFOL )
C
IF ( IFLAG.LT.0 )
$ GO TO 40
END IF
END IF
C
C Beginning of the inner loop.
C
20 CONTINUE
C
C Store the Levenberg factor in DWORK(E) (which is no longer
C needed), to pass it to JPJ routine.
C
DWORK(E) = PAR
C
C Solve (J'*J + PAR*I)*x = J'*e, and store x in DWORK(IW1).
C Additional workspace:
C N*N + DW(JPJ), if ALG = 'D', STOR = 'F';
C N*( N + 1)/2 + DW(JPJ), if ALG = 'D', STOR = 'P';
C 3*N + DW(JPJ), if ALG = 'I'.
C
IF ( CHOL ) THEN
CALL DCOPY( N, DWORK(JTE), 1, DWORK(IW1), 1 )
CALL MB02XD( 'Function', STOR, UPLO, JPJ, M, N, 1, IPAR,
$ LIPAR, DWORK(E), 1, DWORK(JAC), LDJ,
$ DWORK(IW1), N, DWORK(DWJTJ), N,
$ DWORK(JWORK), LDWORK-JWORK+1, INFOL )
ELSE
CALL MB02WD( 'Function', JPJ, N, IPAR, LIPAR, DWORK(E),
$ 1, 3*N, DWORK(JAC), LDJ, DWORK(JTE), 1,
$ DWORK(IW1), 1, CGTOL*GNORM, DWORK(JWORK),
$ LDWORK-JWORK+1, IWARN, INFOL )
ITERCG = ITERCG + INT( DWORK(JWORK) )
IWARNL = MAX( 2*IWARN, IWARNL )
ENDIF
C
IF ( INFOL.NE.0 ) THEN
INFO = 3
RETURN
ENDIF
C
C Compute updated X.
C
DO 30 I = 0, N - 1
DWORK(IW2+I) = X(I+1) - DWORK(IW1+I)
30 CONTINUE
C
C Evaluate the function at x - p and calculate its norm.
C Workspace: need: SIZEJ + M + 3*N + LFCN1;
C prefer: larger.
C
IFLAG = 1
CALL FCN( IFLAG, M, N, IPAR, LIPAR, DPAR1, LDPAR1, DPAR2,
$ LDPAR2, DWORK(IW2), NFEVL, DWORK(E), DWORK(JAC),
$ LDJ, DWORK(JTE), DWORK(JW2), LDWORK-JW2+1, INFOL )
C
IF ( INFOL.NE.0 ) THEN
INFO = 1
RETURN
END IF
C
NFEV = NFEV + 1
IF ( IFLAG.LT.0 )
$ GO TO 40
FNORM1 = DNRM2( M, DWORK(E), 1 )
C
C Now, check whether this step was successful and update the
C Levenberg factor.
C
IF ( FNORM.LT.FNORM1 ) THEN
C
C Unsuccessful step: increase PAR.
C
ACTRED = ONE
IF ( PAR.GT.PARMAX ) THEN
IF ( PAR/MARQF.LE.BIGNUM )
$ PAR = PAR*MARQF
ELSE
PAR = PAR*MARQF
END IF
C
ELSE
C
C Successful step: update PAR, X, and FNORM.
C
ACTRED = ONE - ( FNORM1/FNORM )**2
IF ( ( FNORM - FNORM1 )*( FNORM + FNORM1 ) .LT.
$ MINIMP*DDOT( N, DWORK(IW1), 1,
$ DWORK(JTE), 1 ) ) THEN
IF ( PAR.GT.PARMAX ) THEN
IF ( PAR/MARQF.LE.BIGNUM )
$ PAR = PAR*MARQF
ELSE
PAR = PAR*MARQF
END IF
ELSE
PAR = MAX( PAR/MARQF, SMLNUM )
ENDIF
CALL DCOPY( N, DWORK(IW2), 1, X, 1 )
FNORM = FNORM1
ENDIF
C
IF ( ( ACTRED.LE.TOLDEF ) .OR. ( ITER.GT.ITMAX ) .OR.
$ ( PAR.GT.PARMAX ) )
$ GO TO 40
IF ( ACTRED.LE.EPSMCH ) THEN
IWARN = 4
GO TO 40
ENDIF
C
C End of the inner loop. Repeat if unsuccessful iteration.
C
IF ( FNORM.LT.FNORM1 )
$ GO TO 20
C
C End of the outer loop.
C
GO TO 10
C
C END WHILE 10
C
40 CONTINUE
C
C Termination, either normal or user imposed.
C
IF ( ACTRED.GT.TOLDEF )
$ IWARN = 1
IF ( IWARNL.NE.0 )
$ IWARN = 2
C
IF ( IFLAG.LT.0 )
$ IWARN = IFLAG
IF ( NPRINT.GT.0 ) THEN
IFLAG = 0
CALL FCN( IFLAG, M, N, IPAR, LIPAR, DPAR1, LDPAR1, DPAR2,
$ LDPAR2, X, NFEV, DWORK(E), DWORK(JAC), LDJ,
$ DWORK(JTE), DWORK(JW1), LDWORK-JW1+1, INFOL )
IF ( IFLAG.LT.0 )
$ IWARN = IFLAG
END IF
C
DWORK(1) = WRKOPT
DWORK(2) = FNORM
DWORK(3) = ITER
DWORK(4) = ITERCG
DWORK(5) = PAR
C
RETURN
C *** Last line of MD03AD ***
END
|