File: MD03BA.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (151 lines) | stat: -rw-r--r-- 5,517 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
      SUBROUTINE MD03BA( N, IPAR, LIPAR, FNORM, J, LDJ, E, JNORMS,
     $                   GNORM, IPVT, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the QR factorization with column pivoting of an
C     m-by-n Jacobian matrix J (m >= n), that is, J*P = Q*R, where Q is
C     a matrix with orthogonal columns, P a permutation matrix, and
C     R an upper trapezoidal matrix with diagonal elements of
C     nonincreasing magnitude, and to apply the transformation Q' on
C     the error vector e (in-situ). The 1-norm of the scaled gradient
C     is also returned.
C
C     This routine is an interface to SLICOT Library routine MD03BX,
C     for solving standard nonlinear least squares problems using SLICOT
C     routine MD03BD.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The number of columns of the Jacobian matrix J.  N >= 0.
C
C     IPAR    (input) INTEGER array, dimension (LIPAR)
C             The integer parameters describing the structure of the
C             matrix J, as follows:
C             IPAR(1) must contain the number of rows M of the Jacobian
C                     matrix J.  M >= N.
C             IPAR is provided for compatibility with SLICOT Library
C             routine MD03BD.
C
C     LIPAR   (input) INTEGER
C             The length of the array IPAR.  LIPAR >= 1.
C
C     FNORM   (input) DOUBLE PRECISION
C             The Euclidean norm of the vector e.  FNORM >= 0.
C
C     J       (input/output) DOUBLE PRECISION array, dimension (LDJ, N)
C             On entry, the leading M-by-N part of this array must
C             contain the Jacobian matrix J.
C             On exit, the leading N-by-N upper triangular part of this
C             array contains the upper triangular factor R of the
C             Jacobian matrix. Note that for efficiency of the later
C             calculations, the matrix R is delivered with the leading
C             dimension MAX(1,N), possibly much smaller than the value
C             of LDJ on entry.
C
C     LDJ     (input/output) INTEGER
C             The leading dimension of array J.
C             On entry, LDJ >= MAX(1,M).
C             On exit,  LDJ >= MAX(1,N).
C
C     E       (input/output) DOUBLE PRECISION array, dimension (M)
C             On entry, this array must contain the error vector e.
C             On exit, this array contains the updated vector Q'*e.
C
C     JNORMS  (output) DOUBLE PRECISION array, dimension (N)
C             This array contains the Euclidean norms of the columns
C             of the Jacobian matrix, considered in the initial order.
C
C     GNORM   (output) DOUBLE PRECISION
C             If FNORM > 0, the 1-norm of the scaled vector
C             J'*Q'*e/FNORM, with each element i further divided
C             by JNORMS(i) (if JNORMS(i) is nonzero).
C             If FNORM = 0, the returned value of GNORM is 0.
C
C     IPVT    (output) INTEGER array, dimension (N)
C             This array defines the permutation matrix P such that
C             J*P = Q*R. Column j of P is column IPVT(j) of the identity
C             matrix.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 1,      if N = 0 or  M = 1;
C             LDWORK >= 4*N+1,  if N > 1.
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     This routine calls SLICOT Library routine MD03BX to perform the
C     calculations.
C
C     FURTHER COMMENTS
C
C     For efficiency, the arguments are not checked. This is done in
C     the routine MD03BX (except for LIPAR).
C
C     CONTRIBUTORS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Elementary matrix operations, Jacobian matrix, matrix algebra,
C     matrix operations.
C
C     ******************************************************************
C
C     .. Scalar Arguments ..
      INTEGER           INFO, LDJ, LDWORK, LIPAR, N
      DOUBLE PRECISION  FNORM, GNORM
C     .. Array Arguments ..
      INTEGER           IPAR(*), IPVT(*)
      DOUBLE PRECISION  DWORK(*), E(*), J(*), JNORMS(*)
C     .. External Subroutines ..
      EXTERNAL          MD03BX
C     ..
C     .. Executable Statements ..
C
      CALL MD03BX( IPAR(1), N, FNORM, J, LDJ, E, JNORMS, GNORM, IPVT,
     $             DWORK, LDWORK, INFO )
      RETURN
C
C *** Last line of MD03BA ***
      END