1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
SUBROUTINE MD03BA( N, IPAR, LIPAR, FNORM, J, LDJ, E, JNORMS,
$ GNORM, IPVT, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the QR factorization with column pivoting of an
C m-by-n Jacobian matrix J (m >= n), that is, J*P = Q*R, where Q is
C a matrix with orthogonal columns, P a permutation matrix, and
C R an upper trapezoidal matrix with diagonal elements of
C nonincreasing magnitude, and to apply the transformation Q' on
C the error vector e (in-situ). The 1-norm of the scaled gradient
C is also returned.
C
C This routine is an interface to SLICOT Library routine MD03BX,
C for solving standard nonlinear least squares problems using SLICOT
C routine MD03BD.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of columns of the Jacobian matrix J. N >= 0.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of the
C matrix J, as follows:
C IPAR(1) must contain the number of rows M of the Jacobian
C matrix J. M >= N.
C IPAR is provided for compatibility with SLICOT Library
C routine MD03BD.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 1.
C
C FNORM (input) DOUBLE PRECISION
C The Euclidean norm of the vector e. FNORM >= 0.
C
C J (input/output) DOUBLE PRECISION array, dimension (LDJ, N)
C On entry, the leading M-by-N part of this array must
C contain the Jacobian matrix J.
C On exit, the leading N-by-N upper triangular part of this
C array contains the upper triangular factor R of the
C Jacobian matrix. Note that for efficiency of the later
C calculations, the matrix R is delivered with the leading
C dimension MAX(1,N), possibly much smaller than the value
C of LDJ on entry.
C
C LDJ (input/output) INTEGER
C The leading dimension of array J.
C On entry, LDJ >= MAX(1,M).
C On exit, LDJ >= MAX(1,N).
C
C E (input/output) DOUBLE PRECISION array, dimension (M)
C On entry, this array must contain the error vector e.
C On exit, this array contains the updated vector Q'*e.
C
C JNORMS (output) DOUBLE PRECISION array, dimension (N)
C This array contains the Euclidean norms of the columns
C of the Jacobian matrix, considered in the initial order.
C
C GNORM (output) DOUBLE PRECISION
C If FNORM > 0, the 1-norm of the scaled vector
C J'*Q'*e/FNORM, with each element i further divided
C by JNORMS(i) (if JNORMS(i) is nonzero).
C If FNORM = 0, the returned value of GNORM is 0.
C
C IPVT (output) INTEGER array, dimension (N)
C This array defines the permutation matrix P such that
C J*P = Q*R. Column j of P is column IPVT(j) of the identity
C matrix.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 1, if N = 0 or M = 1;
C LDWORK >= 4*N+1, if N > 1.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C This routine calls SLICOT Library routine MD03BX to perform the
C calculations.
C
C FURTHER COMMENTS
C
C For efficiency, the arguments are not checked. This is done in
C the routine MD03BX (except for LIPAR).
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary matrix operations, Jacobian matrix, matrix algebra,
C matrix operations.
C
C ******************************************************************
C
C .. Scalar Arguments ..
INTEGER INFO, LDJ, LDWORK, LIPAR, N
DOUBLE PRECISION FNORM, GNORM
C .. Array Arguments ..
INTEGER IPAR(*), IPVT(*)
DOUBLE PRECISION DWORK(*), E(*), J(*), JNORMS(*)
C .. External Subroutines ..
EXTERNAL MD03BX
C ..
C .. Executable Statements ..
C
CALL MD03BX( IPAR(1), N, FNORM, J, LDJ, E, JNORMS, GNORM, IPVT,
$ DWORK, LDWORK, INFO )
RETURN
C
C *** Last line of MD03BA ***
END
|