1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
SUBROUTINE MD03BB( COND, N, IPAR, LIPAR, R, LDR, IPVT, DIAG, QTB,
$ DELTA, PAR, RANKS, X, RX, TOL, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To determine a value for the parameter PAR such that if x solves
C the system
C
C A*x = b , sqrt(PAR)*D*x = 0 ,
C
C in the least squares sense, where A is an m-by-n matrix, D is an
C n-by-n nonsingular diagonal matrix, and b is an m-vector, and if
C DELTA is a positive number, DXNORM is the Euclidean norm of D*x,
C then either PAR is zero and
C
C ( DXNORM - DELTA ) .LE. 0.1*DELTA ,
C
C or PAR is positive and
C
C ABS( DXNORM - DELTA ) .LE. 0.1*DELTA .
C
C It is assumed that a QR factorization, with column pivoting, of A
C is available, that is, A*P = Q*R, where P is a permutation matrix,
C Q has orthogonal columns, and R is an upper triangular matrix
C with diagonal elements of nonincreasing magnitude.
C The routine needs the full upper triangle of R, the permutation
C matrix P, and the first n components of Q'*b (' denotes the
C transpose). On output, MD03BB also provides an upper triangular
C matrix S such that
C
C P'*(A'*A + PAR*D*D)*P = S'*S .
C
C Matrix S is used in the solution process.
C
C This routine is an interface to SLICOT Library routine MD03BY,
C for solving standard nonlinear least squares problems using SLICOT
C routine MD03BD.
C
C ARGUMENTS
C
C Mode Parameters
C
C COND CHARACTER*1
C Specifies whether the condition of the matrices R and S
C should be estimated, as follows:
C = 'E' : use incremental condition estimation for R and S;
C = 'N' : do not use condition estimation, but check the
C diagonal entries of R and S for zero values;
C = 'U' : use the rank already stored in RANKS (for R).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix R. N >= 0.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of the
C matrix R. IPAR and LIPAR are not used by this routine,
C but are provided for compatibility with SLICOT Library
C routine MD03BD.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 0.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR, N)
C On entry, the leading N-by-N upper triangular part of this
C array must contain the upper triangular matrix R.
C On exit, the full upper triangle is unaltered, and the
C strict lower triangle contains the strict upper triangle
C (transposed) of the upper triangular matrix S.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,N).
C
C IPVT (input) INTEGER array, dimension (N)
C This array must define the permutation matrix P such that
C A*P = Q*R. Column j of P is column IPVT(j) of the identity
C matrix.
C
C DIAG (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the diagonal elements of the
C matrix D. DIAG(I) <> 0, I = 1,...,N.
C
C QTB (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the first n elements of the
C vector Q'*b.
C
C DELTA (input) DOUBLE PRECISION
C An upper bound on the Euclidean norm of D*x. DELTA > 0.
C
C PAR (input/output) DOUBLE PRECISION
C On entry, PAR must contain an initial estimate of the
C Levenberg-Marquardt parameter. PAR >= 0.
C On exit, it contains the final estimate of this parameter.
C
C RANKS (input or output) INTEGER array, dimension (1)
C On entry, if COND = 'U' and N > 0, this array must contain
C the numerical rank of the matrix R.
C On exit, this array contains the numerical rank of the
C matrix S.
C RANKS is defined as an array for compatibility with SLICOT
C Library routine MD03BD.
C
C X (output) DOUBLE PRECISION array, dimension (N)
C This array contains the least squares solution of the
C system A*x = b, sqrt(PAR)*D*x = 0.
C
C RX (output) DOUBLE PRECISION array, dimension (N)
C This array contains the matrix-vector product -R*P'*x.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If COND = 'E', the tolerance to be used for finding the
C rank of the matrices R and S. If the user sets TOL > 0,
C then the given value of TOL is used as a lower bound for
C the reciprocal condition number; a (sub)matrix whose
C estimated condition number is less than 1/TOL is
C considered to be of full rank. If the user sets TOL <= 0,
C then an implicitly computed, default tolerance, defined by
C TOLDEF = N*EPS, is used instead, where EPS is the machine
C precision (see LAPACK Library routine DLAMCH).
C This parameter is not relevant if COND = 'U' or 'N'.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, the first N elements of this array contain the
C diagonal elements of the upper triangular matrix S.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 4*N, if COND = 'E';
C LDWORK >= 2*N, if COND <> 'E'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C This routine calls SLICOT Library routine MD03BY to perform the
C calculations.
C
C FURTHER COMMENTS
C
C For efficiency, the arguments are not checked. This is done in
C the routine MD03BY (except for LIPAR).
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Linear system of equations, matrix operations, plane rotations.
C
C ******************************************************************
C
C .. Scalar Arguments ..
CHARACTER COND
INTEGER INFO, LDR, LDWORK, LIPAR, N
DOUBLE PRECISION DELTA, PAR, TOL
C .. Array Arguments ..
INTEGER IPAR(*), IPVT(*), RANKS(*)
DOUBLE PRECISION DIAG(*), DWORK(*), QTB(*), R(LDR,*), RX(*), X(*)
C .. External Subroutines ..
EXTERNAL MD03BY
C ..
C .. Executable Statements ..
C
CALL MD03BY( COND, N, R, LDR, IPVT, DIAG, QTB, DELTA, PAR,
$ RANKS(1), X, RX, TOL, DWORK, LDWORK, INFO )
RETURN
C
C *** Last line of MD03BB ***
END
|