1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
SUBROUTINE MD03BX( M, N, FNORM, J, LDJ, E, JNORMS, GNORM, IPVT,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the QR factorization with column pivoting of an
C m-by-n matrix J (m >= n), that is, J*P = Q*R, where Q is a matrix
C with orthogonal columns, P a permutation matrix, and R an upper
C trapezoidal matrix with diagonal elements of nonincreasing
C magnitude, and to apply the transformation Q' on the error
C vector e (in-situ). The 1-norm of the scaled gradient is also
C returned. The matrix J could be the Jacobian of a nonlinear least
C squares problem.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C M (input) INTEGER
C The number of rows of the Jacobian matrix J. M >= 0.
C
C N (input) INTEGER
C The number of columns of the Jacobian matrix J.
C M >= N >= 0.
C
C FNORM (input) DOUBLE PRECISION
C The Euclidean norm of the vector e. FNORM >= 0.
C
C J (input/output) DOUBLE PRECISION array, dimension (LDJ, N)
C On entry, the leading M-by-N part of this array must
C contain the Jacobian matrix J.
C On exit, the leading N-by-N upper triangular part of this
C array contains the upper triangular factor R of the
C Jacobian matrix. Note that for efficiency of the later
C calculations, the matrix R is delivered with the leading
C dimension MAX(1,N), possibly much smaller than the value
C of LDJ on entry.
C
C LDJ (input/output) INTEGER
C The leading dimension of array J.
C On entry, LDJ >= MAX(1,M).
C On exit, LDJ >= MAX(1,N).
C
C E (input/output) DOUBLE PRECISION array, dimension (M)
C On entry, this array must contain the error vector e.
C On exit, this array contains the updated vector Q'*e.
C
C JNORMS (output) DOUBLE PRECISION array, dimension (N)
C This array contains the Euclidean norms of the columns of
C the Jacobian matrix, considered in the initial order.
C
C GNORM (output) DOUBLE PRECISION
C If FNORM > 0, the 1-norm of the scaled vector
C J'*Q'*e/FNORM, with each element i further divided by
C JNORMS(i) (if JNORMS(i) is nonzero).
C If FNORM = 0, the returned value of GNORM is 0.
C
C IPVT (output) INTEGER array, dimension (N)
C This array defines the permutation matrix P such that
C J*P = Q*R. Column j of P is column IPVT(j) of the identity
C matrix.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 1, if N = 0 or M = 1;
C LDWORK >= 4*N+1, if N > 1.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The algorithm uses QR factorization with column pivoting of the
C matrix J, J*P = Q*R, and applies the orthogonal matrix Q' to the
C vector e.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Elementary matrix operations, Jacobian matrix, matrix algebra,
C matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, LDJ, LDWORK, M, N
DOUBLE PRECISION FNORM, GNORM
C .. Array Arguments ..
INTEGER IPVT(*)
DOUBLE PRECISION DWORK(*), E(*), J(*), JNORMS(*)
C .. Local Scalars ..
INTEGER I, ITAU, JWORK, L, WRKOPT
DOUBLE PRECISION SUM
C .. External Functions ..
DOUBLE PRECISION DDOT, DNRM2
EXTERNAL DDOT, DNRM2
C .. External Subroutines ..
EXTERNAL DGEQP3, DLACPY, DORMQR, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, INT, MAX
C ..
C .. Executable Statements ..
C
INFO = 0
IF ( M.LT.0 ) THEN
INFO = -1
ELSEIF ( N.LT.0.OR. M.LT.N ) THEN
INFO = -2
ELSEIF ( FNORM.LT.ZERO ) THEN
INFO = -3
ELSEIF ( LDJ.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE
IF ( N.EQ.0 .OR. M.EQ.1 ) THEN
JWORK = 1
ELSE
JWORK = 4*N + 1
END IF
IF ( LDWORK.LT.JWORK )
$ INFO = -11
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MD03BX', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
GNORM = ZERO
IF ( N.EQ.0 ) THEN
LDJ = 1
DWORK(1) = ONE
RETURN
ELSEIF ( M.EQ.1 ) THEN
JNORMS(1) = ABS( J(1) )
IF ( FNORM*J(1).NE.ZERO )
$ GNORM = ABS( E(1)/FNORM )
LDJ = 1
IPVT(1) = 1
DWORK(1) = ONE
RETURN
END IF
C
C Initialize the column pivoting indices.
C
DO 10 I = 1, N
IPVT(I) = 0
10 CONTINUE
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
ITAU = 1
JWORK = ITAU + N
WRKOPT = 1
C
C Compute the QR factorization with pivoting of J, and apply Q' to
C the vector e.
C
C Workspace: need: 4*N + 1;
C prefer: 3*N + ( N+1 )*NB.
C
CALL DGEQP3( M, N, J, LDJ, IPVT, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
C Workspace: need: N + 1;
C prefer: N + NB.
C
CALL DORMQR( 'Left', 'Transpose', M, 1, N, J, LDJ, DWORK(ITAU), E,
$ M, DWORK(JWORK), LDWORK-JWORK+1, INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) ) + JWORK - 1 )
C
IF ( LDJ.GT.N ) THEN
C
C Reshape the array J to have the leading dimension N.
C This destroys the details of the orthogonal matrix Q.
C
CALL DLACPY( 'Upper', N, N, J, LDJ, J, N )
LDJ = N
END IF
C
C Compute the norm of the scaled gradient and original column norms.
C
IF ( FNORM.NE.ZERO ) THEN
C
DO 20 I = 1, N
L = IPVT(I)
JNORMS(L) = DNRM2( I, J((I-1)*LDJ+1), 1 )
IF ( JNORMS(L).NE.ZERO ) THEN
SUM = DDOT( I, J((I-1)*LDJ+1), 1, E, 1 )/FNORM
GNORM = MAX( GNORM, ABS( SUM/JNORMS(L) ) )
END IF
20 CONTINUE
C
ELSE
C
DO 30 I = 1, N
L = IPVT(I)
JNORMS(L) = DNRM2( I, J((I-1)*LDJ+1), 1 )
30 CONTINUE
C
END IF
C
DWORK(1) = WRKOPT
RETURN
C
C *** Last line of MD03BX ***
END
|