1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
SUBROUTINE MD03BY( COND, N, R, LDR, IPVT, DIAG, QTB, DELTA, PAR,
$ RANK, X, RX, TOL, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To determine a value for the parameter PAR such that if x solves
C the system
C
C A*x = b , sqrt(PAR)*D*x = 0 ,
C
C in the least squares sense, where A is an m-by-n matrix, D is an
C n-by-n nonsingular diagonal matrix, and b is an m-vector, and if
C DELTA is a positive number, DXNORM is the Euclidean norm of D*x,
C then either PAR is zero and
C
C ( DXNORM - DELTA ) .LE. 0.1*DELTA ,
C
C or PAR is positive and
C
C ABS( DXNORM - DELTA ) .LE. 0.1*DELTA .
C
C It is assumed that a QR factorization, with column pivoting, of A
C is available, that is, A*P = Q*R, where P is a permutation matrix,
C Q has orthogonal columns, and R is an upper triangular matrix
C with diagonal elements of nonincreasing magnitude.
C The routine needs the full upper triangle of R, the permutation
C matrix P, and the first n components of Q'*b (' denotes the
C transpose). On output, MD03BY also provides an upper triangular
C matrix S such that
C
C P'*(A'*A + PAR*D*D)*P = S'*S .
C
C Matrix S is used in the solution process.
C
C ARGUMENTS
C
C Mode Parameters
C
C COND CHARACTER*1
C Specifies whether the condition of the matrices R and S
C should be estimated, as follows:
C = 'E' : use incremental condition estimation for R and S;
C = 'N' : do not use condition estimation, but check the
C diagonal entries of R and S for zero values;
C = 'U' : use the rank already stored in RANK (for R).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix R. N >= 0.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR, N)
C On entry, the leading N-by-N upper triangular part of this
C array must contain the upper triangular matrix R.
C On exit, the full upper triangle is unaltered, and the
C strict lower triangle contains the strict upper triangle
C (transposed) of the upper triangular matrix S.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,N).
C
C IPVT (input) INTEGER array, dimension (N)
C This array must define the permutation matrix P such that
C A*P = Q*R. Column j of P is column IPVT(j) of the identity
C matrix.
C
C DIAG (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the diagonal elements of the
C matrix D. DIAG(I) <> 0, I = 1,...,N.
C
C QTB (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the first n elements of the
C vector Q'*b.
C
C DELTA (input) DOUBLE PRECISION
C An upper bound on the Euclidean norm of D*x. DELTA > 0.
C
C PAR (input/output) DOUBLE PRECISION
C On entry, PAR must contain an initial estimate of the
C Levenberg-Marquardt parameter. PAR >= 0.
C On exit, it contains the final estimate of this parameter.
C
C RANK (input or output) INTEGER
C On entry, if COND = 'U', this parameter must contain the
C (numerical) rank of the matrix R.
C On exit, this parameter contains the numerical rank of
C the matrix S.
C
C X (output) DOUBLE PRECISION array, dimension (N)
C This array contains the least squares solution of the
C system A*x = b, sqrt(PAR)*D*x = 0.
C
C RX (output) DOUBLE PRECISION array, dimension (N)
C This array contains the matrix-vector product -R*P'*x.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If COND = 'E', the tolerance to be used for finding the
C rank of the matrices R and S. If the user sets TOL > 0,
C then the given value of TOL is used as a lower bound for
C the reciprocal condition number; a (sub)matrix whose
C estimated condition number is less than 1/TOL is
C considered to be of full rank. If the user sets TOL <= 0,
C then an implicitly computed, default tolerance, defined by
C TOLDEF = N*EPS, is used instead, where EPS is the machine
C precision (see LAPACK Library routine DLAMCH).
C This parameter is not relevant if COND = 'U' or 'N'.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, the first N elements of this array contain the
C diagonal elements of the upper triangular matrix S.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 4*N, if COND = 'E';
C LDWORK >= 2*N, if COND <> 'E'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The algorithm computes the Gauss-Newton direction. A least squares
C solution is found if the Jacobian is rank deficient. If the Gauss-
C Newton direction is not acceptable, then an iterative algorithm
C obtains improved lower and upper bounds for the parameter PAR.
C Only a few iterations are generally needed for convergence of the
C algorithm. If, however, the limit of ITMAX = 10 iterations is
C reached, then the output PAR will contain the best value obtained
C so far. If the Gauss-Newton step is acceptable, it is stored in x,
C and PAR is set to zero, hence S = R.
C
C REFERENCES
C
C [1] More, J.J., Garbow, B.S, and Hillstrom, K.E.
C User's Guide for MINPACK-1.
C Applied Math. Division, Argonne National Laboratory, Argonne,
C Illinois, Report ANL-80-74, 1980.
C
C NUMERICAL ASPECTS
C 2
C The algorithm requires 0(N ) operations and is backward stable.
C
C FURTHER COMMENTS
C
C This routine is a LAPACK-based modification of LMPAR from the
C MINPACK package [1], and with optional condition estimation.
C The option COND = 'U' is useful when dealing with several
C right-hand side vectors, but RANK should be reset.
C If COND = 'E', but the matrix S is guaranteed to be nonsingular
C and well conditioned relative to TOL, i.e., rank(R) = N, and
C min(DIAG) > 0, then its condition is not estimated.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2005.
C
C KEYWORDS
C
C Linear system of equations, matrix operations, plane rotations.
C
C ******************************************************************
C
C .. Parameters ..
INTEGER ITMAX
PARAMETER ( ITMAX = 10 )
DOUBLE PRECISION P1, P001, ZERO, SVLMAX
PARAMETER ( P1 = 1.0D-1, P001 = 1.0D-3, ZERO = 0.0D0,
$ SVLMAX = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER COND
INTEGER INFO, LDR, LDWORK, N, RANK
DOUBLE PRECISION DELTA, PAR, TOL
C .. Array Arguments ..
INTEGER IPVT(*)
DOUBLE PRECISION DIAG(*), DWORK(*), QTB(*), R(LDR,*), RX(*), X(*)
C .. Local Scalars ..
INTEGER ITER, J, L, N2
DOUBLE PRECISION DMINO, DWARF, DXNORM, FP, GNORM, PARC, PARL,
$ PARU, TEMP, TOLDEF
LOGICAL ECOND, NCOND, SING, UCOND
CHARACTER CONDL
C .. Local Arrays ..
DOUBLE PRECISION DUM(3)
C .. External Functions ..
DOUBLE PRECISION DDOT, DLAMCH, DNRM2
LOGICAL LSAME
EXTERNAL DDOT, DLAMCH, DNRM2, LSAME
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DSWAP, DTRMV, DTRSV, MB02YD,
$ MB03OD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
C ..
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
ECOND = LSAME( COND, 'E' )
NCOND = LSAME( COND, 'N' )
UCOND = LSAME( COND, 'U' )
INFO = 0
IF( .NOT.( ECOND .OR. NCOND .OR. UCOND ) ) THEN
INFO = -1
ELSEIF( N.LT.0 ) THEN
INFO = -2
ELSEIF ( LDR.LT.MAX( 1, N ) ) THEN
INFO = -4
ELSEIF ( DELTA.LE.ZERO ) THEN
INFO = -8
ELSEIF( PAR.LT.ZERO ) THEN
INFO = -9
ELSEIF ( UCOND .AND. ( RANK.LT.0 .OR. RANK.GT.N ) ) THEN
INFO = -10
ELSEIF ( LDWORK.LT.2*N .OR. ( ECOND .AND. LDWORK.LT.4*N ) ) THEN
INFO = -15
ELSEIF ( N.GT.0 ) THEN
DMINO = DIAG(1)
SING = .FALSE.
C
DO 10 J = 1, N
IF ( DIAG(J).LT.DMINO )
$ DMINO = DIAG(J)
SING = SING .OR. DIAG(J).EQ.ZERO
10 CONTINUE
C
IF ( SING )
$ INFO = -6
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'MD03BY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
PAR = ZERO
RANK = 0
RETURN
END IF
C
C DWARF is the smallest positive magnitude.
C
DWARF = DLAMCH( 'Underflow' )
N2 = N
C
C Estimate the rank of R, if required.
C
IF ( ECOND ) THEN
N2 = 2*N
TEMP = TOL
IF ( TEMP.LE.ZERO ) THEN
C
C Use the default tolerance in rank determination.
C
TEMP = DBLE( N )*DLAMCH( 'Epsilon' )
END IF
C
C Estimate the reciprocal condition number of R and set the rank.
C Workspace: 2*N.
C
CALL MB03OD( 'No QR', N, N, R, LDR, IPVT, TEMP, SVLMAX, DWORK,
$ RANK, DUM, DWORK, LDWORK, INFO )
C
ELSEIF ( NCOND ) THEN
J = 1
C
20 CONTINUE
IF ( R(J,J).NE.ZERO ) THEN
J = J + 1
IF ( J.LE.N )
$ GO TO 20
END IF
C
RANK = J - 1
END IF
C
C Compute and store in x the Gauss-Newton direction. If the
C Jacobian is rank-deficient, obtain a least squares solution.
C The array RX is used as workspace.
C
CALL DCOPY( RANK, QTB, 1, RX, 1 )
DUM(1) = ZERO
IF ( RANK.LT.N )
$ CALL DCOPY( N-RANK, DUM, 0, RX(RANK+1), 1 )
CALL DTRSV( 'Upper', 'No transpose', 'Non unit', RANK, R, LDR,
$ RX, 1 )
C
DO 30 J = 1, N
L = IPVT(J)
X(L) = RX(J)
30 CONTINUE
C
C Initialize the iteration counter.
C Evaluate the function at the origin, and test
C for acceptance of the Gauss-Newton direction.
C
ITER = 0
C
DO 40 J = 1, N
DWORK(J) = DIAG(J)*X(J)
40 CONTINUE
C
DXNORM = DNRM2( N, DWORK, 1 )
FP = DXNORM - DELTA
IF ( FP.GT.P1*DELTA ) THEN
C
C Set an appropriate option for estimating the condition of
C the matrix S.
C
IF ( UCOND ) THEN
IF ( LDWORK.GE.4*N ) THEN
CONDL = 'E'
TOLDEF = DBLE( N )*DLAMCH( 'Epsilon' )
ELSE
CONDL = 'N'
TOLDEF = TOL
END IF
ELSE
CONDL = COND
TOLDEF = TOL
END IF
C
C If the Jacobian is not rank deficient, the Newton
C step provides a lower bound, PARL, for the zero of
C the function. Otherwise set this bound to zero.
C
IF ( RANK.EQ.N ) THEN
C
DO 50 J = 1, N
L = IPVT(J)
RX(J) = DIAG(L)*( DWORK(L)/DXNORM )
50 CONTINUE
C
CALL DTRSV( 'Upper', 'Transpose', 'Non unit', N, R, LDR,
$ RX, 1 )
TEMP = DNRM2( N, RX, 1 )
PARL = ( ( FP/DELTA )/TEMP )/TEMP
C
C For efficiency, use CONDL = 'U', if possible.
C
IF ( .NOT.LSAME( CONDL, 'U' ) .AND. DMINO.GT.ZERO )
$ CONDL = 'U'
ELSE
PARL = ZERO
END IF
C
C Calculate an upper bound, PARU, for the zero of the function.
C
DO 60 J = 1, N
L = IPVT(J)
RX(J) = DDOT( J, R(1,J), 1, QTB, 1 )/DIAG(L)
60 CONTINUE
C
GNORM = DNRM2( N, RX, 1 )
PARU = GNORM/DELTA
IF ( PARU.EQ.ZERO )
$ PARU = DWARF/MIN( DELTA, P1 )/P001
C
C If the input PAR lies outside of the interval (PARL,PARU),
C set PAR to the closer endpoint.
C
PAR = MAX( PAR, PARL )
PAR = MIN( PAR, PARU )
IF ( PAR.EQ.ZERO )
$ PAR = GNORM/DXNORM
C
C Beginning of an iteration.
C
70 CONTINUE
ITER = ITER + 1
C
C Evaluate the function at the current value of PAR.
C
IF ( PAR.EQ.ZERO )
$ PAR = MAX( DWARF, P001*PARU )
TEMP = SQRT( PAR )
C
DO 80 J = 1, N
RX(J) = TEMP*DIAG(J)
80 CONTINUE
C
C Solve the system A*x = b , sqrt(PAR)*D*x = 0 , in a least
C square sense. The first N elements of DWORK contain the
C diagonal elements of the upper triangular matrix S, and
C the next N elements contain the vector z, so that x = P*z.
C The vector z is preserved if COND = 'E'.
C Workspace: 4*N, if CONDL = 'E';
C 2*N, if CONDL <> 'E'.
C
CALL MB02YD( CONDL, N, R, LDR, IPVT, RX, QTB, RANK, X,
$ TOLDEF, DWORK, LDWORK, INFO )
C
DO 90 J = 1, N
DWORK(N2+J) = DIAG(J)*X(J)
90 CONTINUE
C
DXNORM = DNRM2( N, DWORK(N2+1), 1 )
TEMP = FP
FP = DXNORM - DELTA
C
C If the function is small enough, accept the current value
C of PAR. Also test for the exceptional cases where PARL
C is zero or the number of iterations has reached ITMAX.
C
IF ( ABS( FP ).GT.P1*DELTA .AND.
$ ( PARL.NE.ZERO .OR. FP.GT.TEMP .OR. TEMP.GE.ZERO ) .AND.
$ ITER.LT.ITMAX ) THEN
C
C Compute the Newton correction.
C
DO 100 J = 1, RANK
L = IPVT(J)
RX(J) = DIAG(L)*( DWORK(N2+L)/DXNORM )
100 CONTINUE
C
IF ( RANK.LT.N )
$ CALL DCOPY( N-RANK, DUM, 0, RX(RANK+1), 1 )
CALL DSWAP( N, R, LDR+1, DWORK, 1 )
CALL DTRSV( 'Lower', 'No transpose', 'Non Unit', RANK,
$ R, LDR, RX, 1 )
CALL DSWAP( N, R, LDR+1, DWORK, 1 )
TEMP = DNRM2( RANK, RX, 1 )
PARC = ( ( FP/DELTA )/TEMP )/TEMP
C
C Depending on the sign of the function, update PARL
C or PARU.
C
IF ( FP.GT.ZERO ) THEN
PARL = MAX( PARL, PAR )
ELSE IF ( FP.LT.ZERO ) THEN
PARU = MIN( PARU, PAR )
END IF
C
C Compute an improved estimate for PAR.
C
PAR = MAX( PARL, PAR + PARC )
C
C End of an iteration.
C
GO TO 70
END IF
END IF
C
C Compute -R*P'*x = -R*z.
C
IF ( ECOND .AND. ITER.GT.0 ) THEN
C
DO 110 J = 1, N
RX(J) = -DWORK(N+J)
110 CONTINUE
C
CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', N, R, LDR,
$ RX, 1 )
ELSE
C
DO 120 J = 1, N
RX(J) = ZERO
L = IPVT(J)
CALL DAXPY( J, -X(L), R(1,J), 1, RX, 1 )
120 CONTINUE
C
END IF
C
C Termination. If PAR = 0, set S.
C
IF ( ITER.EQ.0 ) THEN
PAR = ZERO
C
DO 130 J = 1, N - 1
DWORK(J) = R(J,J)
CALL DCOPY( N-J, R(J,J+1), LDR, R(J+1,J), 1 )
130 CONTINUE
C
DWORK(N) = R(N,N)
END IF
C
RETURN
C
C *** Last line of MD03BY ***
END
|