File: MD03BY.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (514 lines) | stat: -rw-r--r-- 16,847 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
      SUBROUTINE MD03BY( COND, N, R, LDR, IPVT, DIAG, QTB, DELTA, PAR,
     $                   RANK, X, RX, TOL, DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To determine a value for the parameter PAR such that if x solves
C     the system
C
C           A*x = b ,     sqrt(PAR)*D*x = 0 ,
C
C     in the least squares sense, where A is an m-by-n matrix, D is an
C     n-by-n nonsingular diagonal matrix, and b is an m-vector, and if
C     DELTA is a positive number, DXNORM is the Euclidean norm of D*x,
C     then either PAR is zero and
C
C           ( DXNORM - DELTA ) .LE. 0.1*DELTA ,
C
C     or PAR is positive and
C
C           ABS( DXNORM - DELTA ) .LE. 0.1*DELTA .
C
C     It is assumed that a QR factorization, with column pivoting, of A
C     is available, that is, A*P = Q*R, where P is a permutation matrix,
C     Q has orthogonal columns, and R is an upper triangular matrix
C     with diagonal elements of nonincreasing magnitude.
C     The routine needs the full upper triangle of R, the permutation
C     matrix P, and the first n components of Q'*b (' denotes the
C     transpose). On output, MD03BY also provides an upper triangular
C     matrix S such that
C
C           P'*(A'*A + PAR*D*D)*P = S'*S .
C
C     Matrix S is used in the solution process.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COND    CHARACTER*1
C             Specifies whether the condition of the matrices R and S
C             should be estimated, as follows:
C             = 'E' :  use incremental condition estimation for R and S;
C             = 'N' :  do not use condition estimation, but check the
C                      diagonal entries of R and S for zero values;
C             = 'U' :  use the rank already stored in RANK (for R).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix R.  N >= 0.
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR, N)
C             On entry, the leading N-by-N upper triangular part of this
C             array must contain the upper triangular matrix R.
C             On exit, the full upper triangle is unaltered, and the
C             strict lower triangle contains the strict upper triangle
C             (transposed) of the upper triangular matrix S.
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,N).
C
C     IPVT    (input) INTEGER array, dimension (N)
C             This array must define the permutation matrix P such that
C             A*P = Q*R. Column j of P is column IPVT(j) of the identity
C             matrix.
C
C     DIAG    (input) DOUBLE PRECISION array, dimension (N)
C             This array must contain the diagonal elements of the
C             matrix D.  DIAG(I) <> 0, I = 1,...,N.
C
C     QTB     (input) DOUBLE PRECISION array, dimension (N)
C             This array must contain the first n elements of the
C             vector Q'*b.
C
C     DELTA   (input) DOUBLE PRECISION
C             An upper bound on the Euclidean norm of D*x.  DELTA > 0.
C
C     PAR     (input/output) DOUBLE PRECISION
C             On entry, PAR must contain an initial estimate of the
C             Levenberg-Marquardt parameter.  PAR >= 0.
C             On exit, it contains the final estimate of this parameter.
C
C     RANK    (input or output) INTEGER
C             On entry, if COND = 'U', this parameter must contain the
C             (numerical) rank of the matrix R.
C             On exit, this parameter contains the numerical rank of
C             the matrix S.
C
C     X       (output) DOUBLE PRECISION array, dimension (N)
C             This array contains the least squares solution of the
C             system A*x = b, sqrt(PAR)*D*x = 0.
C
C     RX      (output) DOUBLE PRECISION array, dimension (N)
C             This array contains the matrix-vector product -R*P'*x.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             If COND = 'E', the tolerance to be used for finding the
C             rank of the matrices R and S. If the user sets TOL > 0,
C             then the given value of TOL is used as a lower bound for
C             the reciprocal condition number;  a (sub)matrix whose
C             estimated condition number is less than 1/TOL is
C             considered to be of full rank.  If the user sets TOL <= 0,
C             then an implicitly computed, default tolerance, defined by
C             TOLDEF = N*EPS,  is used instead, where EPS is the machine
C             precision (see LAPACK Library routine DLAMCH).
C             This parameter is not relevant if COND = 'U' or 'N'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, the first N elements of this array contain the
C             diagonal elements of the upper triangular matrix S.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 4*N, if COND =  'E';
C             LDWORK >= 2*N, if COND <> 'E'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The algorithm computes the Gauss-Newton direction. A least squares
C     solution is found if the Jacobian is rank deficient. If the Gauss-
C     Newton direction is not acceptable, then an iterative algorithm
C     obtains improved lower and upper bounds for the parameter PAR.
C     Only a few iterations are generally needed for convergence of the
C     algorithm. If, however, the limit of ITMAX = 10 iterations is
C     reached, then the output PAR will contain the best value obtained
C     so far. If the Gauss-Newton step is acceptable, it is stored in x,
C     and PAR is set to zero, hence S = R.
C
C     REFERENCES
C
C     [1] More, J.J., Garbow, B.S, and Hillstrom, K.E.
C         User's Guide for MINPACK-1.
C         Applied Math. Division, Argonne National Laboratory, Argonne,
C         Illinois, Report ANL-80-74, 1980.
C
C     NUMERICAL ASPECTS
C                               2
C     The algorithm requires 0(N ) operations and is backward stable.
C
C     FURTHER COMMENTS
C
C     This routine is a LAPACK-based modification of LMPAR from the
C     MINPACK package [1], and with optional condition estimation.
C     The option COND = 'U' is useful when dealing with several
C     right-hand side vectors, but RANK should be reset.
C     If COND = 'E', but the matrix S is guaranteed to be nonsingular
C     and well conditioned relative to TOL, i.e., rank(R) = N, and
C     min(DIAG) > 0, then its condition is not estimated.
C
C     CONTRIBUTORS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2005.
C
C     KEYWORDS
C
C     Linear system of equations, matrix operations, plane rotations.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER           ITMAX
      PARAMETER         ( ITMAX = 10 )
      DOUBLE PRECISION  P1, P001, ZERO, SVLMAX
      PARAMETER         ( P1  = 1.0D-1, P001 = 1.0D-3, ZERO = 0.0D0,
     $                    SVLMAX = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         COND
      INTEGER           INFO, LDR, LDWORK, N, RANK
      DOUBLE PRECISION  DELTA, PAR, TOL
C     .. Array Arguments ..
      INTEGER           IPVT(*)
      DOUBLE PRECISION  DIAG(*), DWORK(*), QTB(*), R(LDR,*), RX(*), X(*)
C     .. Local Scalars ..
      INTEGER           ITER, J, L, N2
      DOUBLE PRECISION  DMINO, DWARF, DXNORM, FP, GNORM, PARC, PARL,
     $                  PARU, TEMP, TOLDEF
      LOGICAL           ECOND, NCOND, SING, UCOND
      CHARACTER         CONDL
C     .. Local Arrays ..
      DOUBLE PRECISION  DUM(3)
C     .. External Functions ..
      DOUBLE PRECISION  DDOT, DLAMCH, DNRM2
      LOGICAL           LSAME
      EXTERNAL          DDOT, DLAMCH, DNRM2, LSAME
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DSWAP, DTRMV, DTRSV, MB02YD,
     $                  MB03OD, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, MAX, MIN, SQRT
C     ..
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      ECOND = LSAME( COND, 'E' )
      NCOND = LSAME( COND, 'N' )
      UCOND = LSAME( COND, 'U' )
      INFO  = 0
      IF( .NOT.( ECOND .OR. NCOND .OR. UCOND ) ) THEN
         INFO = -1
      ELSEIF( N.LT.0 ) THEN
         INFO = -2
      ELSEIF ( LDR.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSEIF ( DELTA.LE.ZERO ) THEN
         INFO = -8
      ELSEIF( PAR.LT.ZERO ) THEN
         INFO = -9
      ELSEIF ( UCOND .AND. ( RANK.LT.0 .OR. RANK.GT.N ) ) THEN
         INFO = -10
      ELSEIF ( LDWORK.LT.2*N .OR. ( ECOND .AND. LDWORK.LT.4*N ) ) THEN
         INFO = -15
      ELSEIF ( N.GT.0 ) THEN
         DMINO = DIAG(1)
         SING  = .FALSE.
C
         DO 10 J = 1, N
            IF ( DIAG(J).LT.DMINO )
     $         DMINO = DIAG(J)
            SING = SING .OR. DIAG(J).EQ.ZERO
   10    CONTINUE
C
         IF ( SING )
     $      INFO = -6
      END IF
C
C     Return if there are illegal arguments.
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'MD03BY', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 ) THEN
         PAR  = ZERO
         RANK = 0
         RETURN
      END IF
C
C     DWARF is the smallest positive magnitude.
C
      DWARF = DLAMCH( 'Underflow' )
      N2    = N
C
C     Estimate the rank of R, if required.
C
      IF ( ECOND ) THEN
         N2   = 2*N
         TEMP = TOL
         IF ( TEMP.LE.ZERO ) THEN
C
C           Use the default tolerance in rank determination.
C
            TEMP = DBLE( N )*DLAMCH( 'Epsilon' )
         END IF
C
C        Estimate the reciprocal condition number of R and set the rank.
C        Workspace: 2*N.
C
         CALL MB03OD( 'No QR', N, N, R, LDR, IPVT, TEMP, SVLMAX, DWORK,
     $                RANK, DUM, DWORK, LDWORK, INFO )
C
      ELSEIF ( NCOND ) THEN
         J = 1
C
   20    CONTINUE
            IF ( R(J,J).NE.ZERO ) THEN
               J = J + 1
               IF ( J.LE.N )
     $            GO TO 20
            END IF
C
         RANK = J - 1
      END IF
C
C     Compute and store in x the Gauss-Newton direction. If the
C     Jacobian is rank-deficient, obtain a least squares solution.
C     The array RX is used as workspace.
C
      CALL DCOPY( RANK, QTB, 1, RX, 1 )
      DUM(1) = ZERO
      IF ( RANK.LT.N )
     $   CALL DCOPY( N-RANK, DUM, 0, RX(RANK+1), 1 )
      CALL DTRSV( 'Upper', 'No transpose', 'Non unit', RANK, R, LDR,
     $            RX, 1 )
C
      DO 30 J = 1, N
         L    = IPVT(J)
         X(L) = RX(J)
   30 CONTINUE
C
C     Initialize the iteration counter.
C     Evaluate the function at the origin, and test
C     for acceptance of the Gauss-Newton direction.
C
      ITER = 0
C
      DO 40 J = 1, N
         DWORK(J) = DIAG(J)*X(J)
   40 CONTINUE
C
      DXNORM = DNRM2( N, DWORK, 1 )
      FP     = DXNORM - DELTA
      IF ( FP.GT.P1*DELTA ) THEN
C
C        Set an appropriate option for estimating the condition of
C        the matrix S.
C
         IF ( UCOND ) THEN
            IF ( LDWORK.GE.4*N ) THEN
               CONDL  = 'E'
               TOLDEF = DBLE( N )*DLAMCH( 'Epsilon' )
            ELSE
               CONDL  = 'N'
               TOLDEF = TOL
            END IF
         ELSE
            CONDL  = COND
            TOLDEF = TOL
         END IF
C
C        If the Jacobian is not rank deficient, the Newton
C        step provides a lower bound, PARL, for the zero of
C        the function. Otherwise set this bound to zero.
C
         IF ( RANK.EQ.N ) THEN
C
            DO 50 J = 1, N
               L = IPVT(J)
               RX(J) = DIAG(L)*( DWORK(L)/DXNORM )
   50       CONTINUE
C
            CALL DTRSV( 'Upper', 'Transpose', 'Non unit', N, R, LDR,
     $                  RX, 1 )
            TEMP = DNRM2( N, RX, 1 )
            PARL = ( ( FP/DELTA )/TEMP )/TEMP
C
C           For efficiency, use CONDL = 'U', if possible.
C
            IF ( .NOT.LSAME( CONDL, 'U' ) .AND. DMINO.GT.ZERO )
     $         CONDL = 'U'
         ELSE
            PARL = ZERO
         END IF
C
C        Calculate an upper bound, PARU, for the zero of the function.
C
         DO 60 J = 1, N
            L = IPVT(J)
            RX(J) = DDOT( J, R(1,J), 1, QTB, 1 )/DIAG(L)
   60    CONTINUE
C
         GNORM = DNRM2( N, RX, 1 )
         PARU  = GNORM/DELTA
         IF ( PARU.EQ.ZERO )
     $      PARU = DWARF/MIN( DELTA, P1 )/P001
C
C        If the input PAR lies outside of the interval (PARL,PARU),
C        set PAR to the closer endpoint.
C
         PAR = MAX( PAR, PARL )
         PAR = MIN( PAR, PARU )
         IF ( PAR.EQ.ZERO )
     $      PAR = GNORM/DXNORM
C
C        Beginning of an iteration.
C
   70    CONTINUE
            ITER = ITER + 1
C
C           Evaluate the function at the current value of PAR.
C
            IF ( PAR.EQ.ZERO )
     $         PAR = MAX( DWARF, P001*PARU )
            TEMP = SQRT( PAR )
C
            DO 80 J = 1, N
               RX(J) = TEMP*DIAG(J)
   80       CONTINUE
C
C           Solve the system A*x = b , sqrt(PAR)*D*x = 0 , in a least
C           square sense. The first N elements of DWORK contain the
C           diagonal elements of the upper triangular matrix S, and
C           the next N elements contain the vector z, so that x = P*z.
C           The vector z is preserved if COND = 'E'.
C           Workspace:   4*N, if CONDL =  'E';
C                        2*N, if CONDL <> 'E'.
C
            CALL MB02YD( CONDL, N, R, LDR, IPVT, RX, QTB, RANK, X,
     $                   TOLDEF, DWORK, LDWORK, INFO )
C
            DO 90 J = 1, N
               DWORK(N2+J) = DIAG(J)*X(J)
   90       CONTINUE
C
            DXNORM = DNRM2( N, DWORK(N2+1), 1 )
            TEMP   = FP
            FP     = DXNORM - DELTA
C
C           If the function is small enough, accept the current value
C           of PAR. Also test for the exceptional cases where PARL
C           is zero or the number of iterations has reached ITMAX.
C
            IF ( ABS( FP ).GT.P1*DELTA .AND.
     $         ( PARL.NE.ZERO .OR. FP.GT.TEMP .OR. TEMP.GE.ZERO ) .AND.
     $           ITER.LT.ITMAX ) THEN
C
C              Compute the Newton correction.
C
               DO 100 J = 1, RANK
                  L = IPVT(J)
                  RX(J) = DIAG(L)*( DWORK(N2+L)/DXNORM )
  100          CONTINUE
C
               IF ( RANK.LT.N )
     $            CALL DCOPY( N-RANK, DUM, 0, RX(RANK+1), 1 )
               CALL DSWAP( N, R, LDR+1, DWORK, 1 )
               CALL DTRSV( 'Lower', 'No transpose', 'Non Unit', RANK,
     $                     R, LDR, RX, 1 )
               CALL DSWAP( N, R, LDR+1, DWORK, 1 )
               TEMP = DNRM2( RANK, RX, 1 )
               PARC = ( ( FP/DELTA )/TEMP )/TEMP
C
C              Depending on the sign of the function, update PARL
C              or PARU.
C
               IF ( FP.GT.ZERO ) THEN
                  PARL = MAX( PARL, PAR )
               ELSE IF ( FP.LT.ZERO ) THEN
                  PARU = MIN( PARU, PAR )
               END IF
C
C              Compute an improved estimate for PAR.
C
               PAR = MAX( PARL, PAR + PARC )
C
C              End of an iteration.
C
               GO TO 70
            END IF
      END IF
C
C     Compute -R*P'*x = -R*z.
C
      IF ( ECOND .AND. ITER.GT.0 ) THEN
C
         DO 110 J = 1, N
            RX(J) = -DWORK(N+J)
  110    CONTINUE
C
         CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', N, R, LDR,
     $               RX, 1 )
      ELSE
C
         DO 120 J = 1, N
            RX(J) = ZERO
            L     = IPVT(J)
            CALL DAXPY( J, -X(L), R(1,J), 1, RX, 1 )
  120    CONTINUE
C
      END IF
C
C     Termination. If PAR = 0, set S.
C
      IF ( ITER.EQ.0 ) THEN
         PAR = ZERO
C
         DO 130 J = 1, N - 1
            DWORK(J) = R(J,J)
            CALL DCOPY( N-J, R(J,J+1), LDR, R(J+1,J), 1 )
  130    CONTINUE
C
         DWORK(N) = R(N,N)
      END IF
C
      RETURN
C
C *** Last line of MD03BY ***
      END