1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
SUBROUTINE NF01AY( NSMP, NZ, L, IPAR, LIPAR, WB, LWB, Z, LDZ,
$ Y, LDY, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To calculate the output of a set of neural networks with the
C structure
C
C - tanh(w1'*z+b1) -
C / : \
C z --- : --- sum(ws(i)*...)+ b(n+1) --- y,
C \ : /
C - tanh(wn'*z+bn) -
C
C given the input z and the parameter vectors wi, ws, and b,
C where z, w1, ..., wn are vectors of length NZ, ws is a vector
C of length n, b(1), ..., b(n+1) are scalars, and n is called the
C number of neurons in the hidden layer, or just number of neurons.
C Such a network is used for each L output variables.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C NSMP (input) INTEGER
C The number of training samples. NSMP >= 0.
C
C NZ (input) INTEGER
C The length of each input sample. NZ >= 0.
C
C L (input) INTEGER
C The length of each output sample. L >= 0.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters needed.
C IPAR(1) must contain the number of neurons, n, per output
C variable, denoted NN in the sequel. NN >= 0.
C
C LIPAR (input) INTEGER
C The length of the vector IPAR. LIPAR >= 1.
C
C WB (input) DOUBLE PRECISION array, dimension (LWB)
C The leading (NN*(NZ+2)+1)*L part of this array must
C contain the weights and biases of the network. This vector
C is partitioned into L vectors of length NN*(NZ+2)+1,
C WB = [ wb(1), ..., wb(L) ]. Each wb(k), k = 1, ..., L,
C corresponds to one output variable, and has the structure
C wb(k) = [ w1(1), ..., w1(NZ), ..., wn(1), ..., wn(NZ),
C ws(1), ..., ws(n), b(1), ..., b(n+1) ],
C where wi(j) are the weights of the hidden layer,
C ws(i) are the weights of the linear output layer, and
C b(i) are the biases, as in the scheme above.
C
C LWB (input) INTEGER
C The length of the array WB.
C LWB >= ( NN*(NZ + 2) + 1 )*L.
C
C Z (input) DOUBLE PRECISION array, dimension (LDZ, NZ)
C The leading NSMP-by-NZ part of this array must contain the
C set of input samples,
C Z = ( Z(1,1),...,Z(1,NZ); ...; Z(NSMP,1),...,Z(NSMP,NZ) ).
C
C LDZ INTEGER
C The leading dimension of the array Z. LDZ >= MAX(1,NSMP).
C
C Y (output) DOUBLE PRECISION array, dimension (LDY, L)
C The leading NSMP-by-L part of this array contains the set
C of output samples,
C Y = ( Y(1,1),...,Y(1,L); ...; Y(NSMP,1),...,Y(NSMP,L) ).
C
C LDY INTEGER
C The leading dimension of the array Y. LDY >= MAX(1,NSMP).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= 2*NN.
C For better performance, LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C BLAS routines are used to compute the matrix-vector products.
C
C CONTRIBUTORS
C
C A. Riedel, R. Schneider, Chemnitz University of Technology,
C Oct. 2000, during a stay at University of Twente, NL.
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Input output description, neural network, nonlinear system,
C simulation, system response.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, L, LDWORK, LDY, LDZ, LIPAR, LWB, NSMP, NZ
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), WB(*), Y(LDY,*), Z(LDZ,*)
INTEGER IPAR(*)
C .. Local Scalars ..
LOGICAL LAST
INTEGER I, IB, J, K, LDWB, LJ, LK, M, MF, NN, NV, WS
DOUBLE PRECISION BIGNUM, DF, SMLNUM, TMP
C .. External Functions ..
DOUBLE PRECISION DDOT, DLAMCH
EXTERNAL DDOT, DLAMCH
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DGEMV, DLABAD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, EXP, LOG, MAX, MIN, MOD
C ..
C .. Executable Statements ..
C
INFO = 0
NN = IPAR(1)
LDWB = NN*( NZ + 2 ) + 1
IF ( NSMP.LT.0 ) THEN
INFO = -1
ELSEIF ( NZ.LT.0 ) THEN
INFO = -2
ELSEIF ( L.LT.0 ) THEN
INFO = -3
ELSEIF ( NN.LT.0 ) THEN
INFO = -4
ELSEIF ( LIPAR.LT.1 ) THEN
INFO = -5
ELSEIF ( LWB.LT.LDWB*L ) THEN
INFO = -7
ELSEIF ( LDZ.LT.MAX( 1, NSMP ) ) THEN
INFO = -9
ELSEIF ( LDY.LT.MAX( 1, NSMP ) ) THEN
INFO = -11
ELSEIF ( LDWORK.LT.2*NN ) THEN
INFO = -13
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'NF01AY', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( MIN( NSMP, L ).EQ.0 )
$ RETURN
C
C Set parameters to avoid overflows and increase accuracy for
C extreme values.
C
SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = LOG( SMLNUM )
BIGNUM = LOG( BIGNUM )
C
WS = NZ*NN + 1
IB = WS + NN - 1
LK = 0
IF ( MIN( NZ, NN ).EQ.0 ) THEN
NV = 2
ELSE
NV = ( LDWORK - NN )/NN
END IF
C
IF ( NV.GT.2 ) THEN
MF = ( NSMP/NV )*NV
LAST = MOD( NSMP, NV ).NE.0
C
C Some BLAS 3 calculations can be used.
C
DO 70 K = 0, L - 1
TMP = WB(IB+NN+1+LK)
C
DO 10 J = 1, NN
DWORK(J) = TWO*WB(IB+J+LK)
10 CONTINUE
C
DO 40 I = 1, MF, NV
C
C Compute -2*[w1 w2 ... wn]'*Z', where
C Z = [z(i)';...; z(i+NV-1)'].
C
CALL DGEMM( 'Transpose', 'Transpose', NN, NV, NZ, -TWO,
$ WB(1+LK), NZ, Z(I,1), LDZ, ZERO, DWORK(NN+1),
$ NN )
LJ = NN
C
DO 30 M = 1, NV
DO 20 J = 1, NN
C
C Compute tanh(wj'*z(i) + bj), j = 1:n.
C
LJ = LJ + 1
DF = DWORK(LJ) - DWORK(J)
IF ( ABS( DF ).GE.BIGNUM ) THEN
IF ( DF.GT.ZERO ) THEN
DWORK(LJ) = -ONE
ELSE
DWORK(LJ) = ONE
END IF
ELSE IF ( ABS( DF ).LE.SMLNUM ) THEN
DWORK(LJ) = ZERO
ELSE
DWORK(LJ) = TWO/( ONE + EXP( DF ) ) - ONE
END IF
20 CONTINUE
C
30 CONTINUE
C
Y(I, K+1) = TMP
CALL DCOPY( NV-1, Y(I, K+1), 0, Y(I+1, K+1), 1 )
CALL DGEMV( 'Transpose', NN, NV, ONE, DWORK(NN+1), NN,
$ WB(WS+LK), 1, ONE, Y(I, K+1), 1 )
40 CONTINUE
C
IF ( LAST ) THEN
C
C Process the last samples.
C
NV = NSMP - MF
I = MF + 1
C
C Compute -2*[w1 w2 ... wn]'*Z', where
C Z = [z(i)';...; z(NSMP)'].
C
CALL DGEMM( 'Transpose', 'Transpose', NN, NV, NZ, -TWO,
$ WB(1+LK), NZ, Z(I,1), LDZ, ZERO, DWORK(NN+1),
$ NN )
LJ = NN
C
DO 60 M = 1, NV
DO 50 J = 1, NN
C
C Compute tanh(wj'*z(i) + bj), j = 1:n.
C
LJ = LJ + 1
DF = DWORK(LJ) - DWORK(J)
IF ( ABS( DF ).GE.BIGNUM ) THEN
IF ( DF.GT.ZERO ) THEN
DWORK(LJ) = -ONE
ELSE
DWORK(LJ) = ONE
END IF
ELSE IF ( ABS( DF ).LE.SMLNUM ) THEN
DWORK(LJ) = ZERO
ELSE
DWORK(LJ) = TWO/( ONE + EXP( DF ) ) - ONE
END IF
50 CONTINUE
C
60 CONTINUE
C
Y(I, K+1) = TMP
IF ( NV.GT.1 )
$ CALL DCOPY( NV-1, Y(I, K+1), 0, Y(I+1, K+1), 1 )
CALL DGEMV( 'Transpose', NN, NV, ONE, DWORK(NN+1), NN,
$ WB(WS+LK), 1, ONE, Y(I, K+1), 1 )
END IF
C
LK = LK + LDWB
70 CONTINUE
C
ELSE
C
C BLAS 2 calculations only can be used.
C
DO 110 K = 0, L - 1
TMP = WB(IB+NN+1+LK)
C
DO 80 J = 1, NN
DWORK(J) = TWO*WB(IB+J+LK)
80 CONTINUE
C
DO 100 I = 1, NSMP
C
C Compute -2*[w1 w2 ... wn]'*z(i).
C
IF ( NZ.EQ.0 ) THEN
DWORK(NN+1) = ZERO
CALL DCOPY( NN, DWORK(NN+1), 0, DWORK(NN+1), 1 )
ELSE
CALL DGEMV( 'Transpose', NZ, NN, -TWO, WB(1+LK), NZ,
$ Z(I,1), LDZ, ZERO, DWORK(NN+1), 1 )
END IF
C
DO 90 J = NN + 1, 2*NN
C
C Compute tanh(wj'*z(i) + bj), j = 1:n.
C
DF = DWORK(J) - DWORK(J-NN)
IF ( ABS( DF ).GE.BIGNUM ) THEN
IF ( DF.GT.ZERO ) THEN
DWORK(J) = -ONE
ELSE
DWORK(J) = ONE
END IF
ELSE IF ( ABS( DF ).LE.SMLNUM ) THEN
DWORK(J) = ZERO
ELSE
DWORK(J) = TWO/( ONE + EXP( DF ) ) - ONE
END IF
90 CONTINUE
C
Y(I, K+1) = DDOT( NN, WB(WS+LK), 1, DWORK(NN+1), 1 ) +
$ TMP
100 CONTINUE
C
LK = LK + LDWB
110 CONTINUE
C
END IF
RETURN
C
C *** Last line of NF01AY ***
END
|