File: NF01BP.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (666 lines) | stat: -rw-r--r-- 23,805 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
      SUBROUTINE NF01BP( COND, N, IPAR, LIPAR, R, LDR, IPVT, DIAG, QTB,
     $                   DELTA, PAR, RANKS, X, RX, TOL, DWORK, LDWORK,
     $                   INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To determine a value for the Levenberg-Marquardt parameter PAR
C     such that if x solves the system
C
C           J*x = b ,     sqrt(PAR)*D*x = 0 ,
C
C     in the least squares sense, where J is an m-by-n matrix, D is an
C     n-by-n nonsingular diagonal matrix, and b is an m-vector, and if
C     DELTA is a positive number, DXNORM is the Euclidean norm of D*x,
C     then either PAR is zero and
C
C           ( DXNORM - DELTA ) .LE. 0.1*DELTA ,
C
C     or PAR is positive and
C
C           ABS( DXNORM - DELTA ) .LE. 0.1*DELTA .
C
C     The matrix J is the current Jacobian matrix of a nonlinear least
C     squares problem, provided in a compressed form by SLICOT Library
C     routine NF01BD. It is assumed that a block QR factorization, with
C     column pivoting, of J is available, that is, J*P = Q*R, where P is
C     a permutation matrix, Q has orthogonal columns, and R is an upper
C     triangular matrix with diagonal elements of nonincreasing
C     magnitude for each block, as returned by SLICOT Library
C     routine NF01BS. The routine NF01BP needs the upper triangle of R
C     in compressed form, the permutation matrix P, and the first
C     n components of Q'*b (' denotes the transpose). On output,
C     NF01BP also provides a compressed representation of an upper
C     triangular matrix S, such that
C
C           P'*(J'*J + PAR*D*D)*P = S'*S .
C
C     Matrix S is used in the solution process. The matrix R has the
C     following structure
C
C         /   R_1    0    ..   0   |   L_1   \
C         |    0    R_2   ..   0   |   L_2   |
C         |    :     :    ..   :   |    :    | ,
C         |    0     0    ..  R_l  |   L_l   |
C         \    0     0    ..   0   |  R_l+1  /
C
C     where the submatrices R_k, k = 1:l, have the same order BSN,
C     and R_k, k = 1:l+1, are square and upper triangular. This matrix
C     is stored in the compressed form
C
C              /   R_1  |   L_1   \
C              |   R_2  |   L_2   |
C       Rc =   |    :   |    :    | ,
C              |   R_l  |   L_l   |
C              \    X   |  R_l+1  /
C
C     where the submatrix X is irrelevant. The matrix S has the same
C     structure as R, and its diagonal blocks are denoted by S_k,
C     k = 1:l+1.
C
C     If l <= 1, then the full upper triangle of the matrix R is stored.
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     COND    CHARACTER*1
C             Specifies whether the condition of the diagonal blocks R_k
C             and S_k of the matrices R and S should be estimated,
C             as follows:
C             = 'E' :  use incremental condition estimation for each
C                      diagonal block of R_k and S_k to find its
C                      numerical rank;
C             = 'N' :  do not use condition estimation, but check the
C                      diagonal entries of R_k and S_k for zero values;
C             = 'U' :  use the ranks already stored in RANKS (for R).
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix R.  N = BN*BSN + ST >= 0.
C             (See parameter description below.)
C
C     IPAR    (input) INTEGER array, dimension (LIPAR)
C             The integer parameters describing the structure of the
C             matrix R, as follows:
C             IPAR(1) must contain ST, the number of columns of the
C                     submatrices L_k and the order of R_l+1.  ST >= 0.
C             IPAR(2) must contain BN, the number of blocks, l, in the
C                     block diagonal part of R.  BN >= 0.
C             IPAR(3) must contain BSM, the number of rows of the blocks
C                     R_k, k = 1:l.  BSM >= 0.
C             IPAR(4) must contain BSN, the number of columns of the
C                     blocks R_k, k = 1:l.  BSN >= 0.
C             BSM is not used by this routine, but assumed equal to BSN.
C
C     LIPAR   (input) INTEGER
C             The length of the array IPAR.  LIPAR >= 4.
C
C     R       (input/output) DOUBLE PRECISION array, dimension (LDR, NC)
C             where NC = N if BN <= 1, and NC = BSN+ST, if BN > 1.
C             On entry, the leading N-by-NC part of this array must
C             contain the (compressed) representation (Rc) of the upper
C             triangular matrix R. If BN > 1, the submatrix X in Rc is
C             not referenced. The zero strict lower triangles of R_k,
C             k = 1:l+1, need not be set. If BN <= 1 or BSN = 0, then
C             the full upper triangle of R must be stored.
C             On exit, the full upper triangles of R_k, k = 1:l+1, and
C             L_k, k = 1:l, are unaltered, and the strict lower
C             triangles of R_k, k = 1:l+1, contain the corresponding
C             strict upper triangles (transposed) of the upper
C             triangular matrix S.
C             If BN <= 1 or BSN = 0, then the transpose of the strict
C             upper triangle of S is stored in the strict lower triangle
C             of R.
C
C     LDR     INTEGER
C             The leading dimension of array R.  LDR >= MAX(1,N).
C
C     IPVT    (input) INTEGER array, dimension (N)
C             This array must define the permutation matrix P such that
C             J*P = Q*R. Column j of P is column IPVT(j) of the identity
C             matrix.
C
C     DIAG    (input) DOUBLE PRECISION array, dimension (N)
C             This array must contain the diagonal elements of the
C             matrix D.  DIAG(I) <> 0, I = 1,...,N.
C
C     QTB     (input) DOUBLE PRECISION array, dimension (N)
C             This array must contain the first n elements of the
C             vector Q'*b.
C
C     DELTA   (input) DOUBLE PRECISION
C             An upper bound on the Euclidean norm of D*x.  DELTA > 0.
C
C     PAR     (input/output) DOUBLE PRECISION
C             On entry, PAR must contain an initial estimate of the
C             Levenberg-Marquardt parameter.  PAR >= 0.
C             On exit, it contains the final estimate of this parameter.
C
C     RANKS   (input or output) INTEGER array, dimension (r), where
C             r = BN + 1,  if ST > 0, BSN > 0, and BN > 1;
C             r = BN,      if ST = 0 and BSN > 0;
C             r = 1,       if ST > 0 and ( BSN = 0 or BN <= 1 );
C             r = 0,       if ST = 0 and BSN = 0.
C             On entry, if COND = 'U' and N > 0, this array must contain
C             the numerical ranks of the submatrices R_k, k = 1:l(+1).
C             On exit, if N > 0, this array contains the numerical ranks
C             of the submatrices S_k, k = 1:l(+1).
C
C     X       (output) DOUBLE PRECISION array, dimension (N)
C             This array contains the least squares solution of the
C             system J*x = b, sqrt(PAR)*D*x = 0.
C
C     RX      (output) DOUBLE PRECISION array, dimension (N)
C             This array contains the matrix-vector product -R*P'*x.
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             If COND = 'E', the tolerance to be used for finding the
C             ranks of the submatrices R_k and S_k. If the user sets
C             TOL > 0, then the given value of TOL is used as a lower
C             bound for the reciprocal condition number;  a (sub)matrix
C             whose estimated condition number is less than 1/TOL is
C             considered to be of full rank.  If the user sets TOL <= 0,
C             then an implicitly computed, default tolerance, defined by
C             TOLDEF = N*EPS,  is used instead, where EPS is the machine
C             precision (see LAPACK Library routine DLAMCH).
C             This parameter is not relevant if COND = 'U' or 'N'.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, the first N elements of this array contain the
C             diagonal elements of the upper triangular matrix S.
C             If BN > 1 and BSN > 0, the elements N+1 : N+ST*(N-ST)
C             contain the submatrix (S(1:N-ST,N-ST+1:N))' of the
C             matrix S.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= 2*N,              if BN <= 1 or  BSN = 0 and
C                                                        COND <> 'E';
C             LDWORK >= 4*N,              if BN <= 1 or  BSN = 0 and
C                                                        COND =  'E';
C             LDWORK >= ST*(N-ST) + 2*N,  if BN >  1 and BSN > 0 and
C                                                        COND <> 'E';
C             LDWORK >= ST*(N-ST) + 2*N + 2*MAX(BSN,ST),
C                                         if BN >  1 and BSN > 0 and
C                                                        COND =  'E'.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The algorithm computes the Gauss-Newton direction. An approximate
C     basic least squares solution is found if the Jacobian is rank
C     deficient. The computations exploit the special structure and
C     storage scheme of the matrix R. If one or more of the submatrices
C     R_k or S_k, k = 1:l+1, is singular, then the computed result is
C     not the basic least squares solution for the whole problem, but a
C     concatenation of (least squares) solutions of the individual
C     subproblems involving R_k or S_k, k = 1:l+1 (with adapted right
C     hand sides).
C
C     If the Gauss-Newton direction is not acceptable, then an iterative
C     algorithm obtains improved lower and upper bounds for the
C     Levenberg-Marquardt parameter PAR. Only a few iterations are
C     generally needed for convergence of the algorithm. If, however,
C     the limit of ITMAX = 10 iterations is reached, then the output PAR
C     will contain the best value obtained so far. If the Gauss-Newton
C     step is acceptable, it is stored in x, and PAR is set to zero,
C     hence S = R.
C
C     REFERENCES
C
C     [1] More, J.J., Garbow, B.S, and Hillstrom, K.E.
C         User's Guide for MINPACK-1.
C         Applied Math. Division, Argonne National Laboratory, Argonne,
C         Illinois, Report ANL-80-74, 1980.
C
C     NUMERICAL ASPECTS
C
C     The algorithm requires 0(N*(BSN+ST)) operations and is backward
C     stable, if R is nonsingular.
C
C     FURTHER COMMENTS
C
C     This routine is a structure-exploiting, LAPACK-based modification
C     of LMPAR from the MINPACK package [1], and with optional condition
C     estimation. The option COND = 'U' is useful when dealing with
C     several right-hand side vectors, but RANKS array should be reset.
C     If COND = 'E', but the matrix S is guaranteed to be nonsingular
C     and well conditioned relative to TOL, i.e., rank(R) = N, and
C     min(DIAG) > 0, then its condition is not estimated.
C
C     CONTRIBUTORS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C     REVISIONS
C
C     V. Sima, Feb. 2004.
C
C     KEYWORDS
C
C     Linear system of equations, matrix operations, plane rotations.
C
C     ******************************************************************
C
C     .. Parameters ..
      INTEGER           ITMAX
      PARAMETER         ( ITMAX = 10 )
      DOUBLE PRECISION  P1, P001, ZERO, ONE
      PARAMETER         ( P1  = 1.0D-1, P001 = 1.0D-3, ZERO = 0.0D0,
     $                    ONE = 1.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         COND
      INTEGER           INFO, LDR, LDWORK, LIPAR, N
      DOUBLE PRECISION  DELTA, PAR, TOL
C     .. Array Arguments ..
      INTEGER           IPAR(*), IPVT(*), RANKS(*)
      DOUBLE PRECISION  DIAG(*), DWORK(*), QTB(*), R(LDR,*), RX(*), X(*)
C     .. Local Scalars ..
      INTEGER           BN, BSM, BSN, I, IBSN, ITER, J, JW, K, L, LDS,
     $                  N2, NTHS, RANK, ST
      DOUBLE PRECISION  DMINO, DWARF, DXNORM, FP, GNORM, PARC, PARL,
     $                  PARU, SUM, TEMP, TOLDEF
      LOGICAL           BADRK, ECOND, NCOND, SING, UCOND
      CHARACTER         CONDL
C     .. External Functions ..
      DOUBLE PRECISION  DDOT, DLAMCH, DNRM2
      LOGICAL           LSAME
      EXTERNAL          DDOT, DLAMCH, DNRM2, LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMV, DTRMV, MD03BY, NF01BQ, NF01BR,
     $                  XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         ABS, DBLE, MAX, MIN, SQRT
C     ..
C     .. Executable Statements ..
C
C     Check the scalar input parameters.
C
      ECOND = LSAME( COND, 'E' )
      NCOND = LSAME( COND, 'N' )
      UCOND = LSAME( COND, 'U' )
      INFO  = 0
      N2    = 2*N
      IF( .NOT.( ECOND .OR. NCOND .OR. UCOND ) ) THEN
         INFO = -1
      ELSEIF( N.LT.0 ) THEN
         INFO = -2
      ELSEIF( LIPAR.LT.4 ) THEN
         INFO = -4
      ELSEIF ( LDR.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSEIF( DELTA.LE.ZERO ) THEN
         INFO = -10
      ELSEIF( PAR.LT.ZERO ) THEN
         INFO = -11
      ELSE
         ST   = IPAR(1)
         BN   = IPAR(2)
         BSM  = IPAR(3)
         BSN  = IPAR(4)
         NTHS = BN*BSN
         IF ( MIN( ST, BN, BSM, BSN ).LT.0 ) THEN
            INFO = -3
         ELSEIF ( N.NE.NTHS + ST ) THEN
            INFO = -2
         ELSE
            IF ( N.GT.0 )
     $         DMINO = DIAG(1)
            SING = .FALSE.
C
            DO 10 J = 1, N
               IF ( DIAG(J).LT.DMINO )
     $            DMINO = DIAG(J)
               SING = SING .OR. DIAG(J).EQ.ZERO
   10       CONTINUE
C
            IF ( SING ) THEN
               INFO = -8
            ELSEIF ( UCOND ) THEN
               BADRK = .FALSE.
               IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
                  IF ( N.GT.0 )
     $               BADRK = RANKS(1).LT.0 .OR. RANKS(1).GT.N
               ELSE
                  RANK  = 0
C
                  DO 20 K = 1, BN
                     BADRK = BADRK .OR. RANKS(K).LT.0
     $                             .OR. RANKS(K).GT.BSN
                     RANK  = RANK + RANKS(K)
   20             CONTINUE
C
                  IF ( ST.GT.0 ) THEN
                     BADRK = BADRK .OR. RANKS(BN+1).LT.0 .OR.
     $                                  RANKS(BN+1).GT.ST
                     RANK  = RANK + RANKS(BN+1)
                  END IF
               END IF
               IF ( BADRK )
     $            INFO = -12
            ELSE
               JW = N2
               IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
                  IF ( ECOND )
     $               JW = 4*N
               ELSE
                  JW = ST*NTHS + JW
                  IF ( ECOND )
     $               JW = 2*MAX( BSN, ST ) + JW
               END IF
               IF ( LDWORK.LT.JW )
     $            INFO = -17
            ENDIF
         ENDIF
      ENDIF
C
C     Return if there are illegal arguments.
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'NF01BP', -INFO )
         RETURN
      ENDIF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 ) THEN
         PAR = ZERO
         RETURN
      END IF
C
      IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
C
C        Special case: R is just an upper triangular matrix.
C        Workspace: 4*N, if COND =  'E';
C                   2*N, if COND <> 'E'.
C
         CALL MD03BY( COND, N, R, LDR, IPVT, DIAG, QTB, DELTA, PAR,
     $                RANKS(1), X, RX, TOL, DWORK, LDWORK, INFO )
         RETURN
      END IF
C
C     General case: l > 1 and BSN > 0.
C     DWARF is the smallest positive magnitude.
C
      DWARF = DLAMCH( 'Underflow' )
C
C     Compute and store in x the Gauss-Newton direction. If the
C     Jacobian is rank-deficient, obtain a least squares solution.
C     The array RX is used as workspace.
C     Workspace: 2*MAX(BSN,ST), if COND =  'E';
C                0,             if COND <> 'E'.
C
      CALL DCOPY( N, QTB, 1, RX, 1 )
      CALL NF01BR( COND, 'Upper', 'No transpose', N, IPAR, LIPAR, R,
     $             LDR, DWORK, DWORK, 1, RX, RANKS, TOL, DWORK, LDWORK,
     $             INFO )
C
      DO 30 J = 1, N
         L    = IPVT(J)
         X(L) = RX(J)
   30 CONTINUE
C
C     Initialize the iteration counter.
C     Evaluate the function at the origin, and test
C     for acceptance of the Gauss-Newton direction.
C
      ITER = 0
C
      DO 40 J = 1, N
         DWORK(J) = DIAG(J)*X(J)
   40 CONTINUE
C
      DXNORM = DNRM2( N, DWORK, 1 )
      FP     = DXNORM - DELTA
      IF ( FP.GT.P1*DELTA ) THEN
C
C        Set an appropriate option for estimating the condition of
C        the matrix S.
C
         LDS = MAX( 1, ST )
         JW  = N2 + ST*NTHS
         IF ( UCOND ) THEN
            IF ( LDWORK.GE.JW + 2*MAX( BSN, ST ) ) THEN
               CONDL  = 'E'
               TOLDEF = DBLE( N )*DLAMCH( 'Epsilon' )
            ELSE
               CONDL  = 'N'
               TOLDEF = TOL
            END IF
         ELSE
            RANK = 0
C
            DO 50 K = 1, BN
               RANK = RANK + RANKS(K)
   50       CONTINUE
C
            IF ( ST.GT.0 )
     $         RANK = RANK + RANKS(BN+1)
            CONDL  = COND
            TOLDEF = TOL
         END IF
C
C        If the Jacobian is not rank deficient, the Newton
C        step provides a lower bound, PARL, for the zero of
C        the function. Otherwise set this bound to zero.
C
         IF ( RANK.EQ.N ) THEN
C
            DO 60 J = 1, N
               L = IPVT(J)
               RX(J) = DIAG(L)*( DWORK(L)/DXNORM )
   60       CONTINUE
C
            CALL NF01BR( 'Use ranks', 'Upper', 'Transpose', N, IPAR,
     $                   LIPAR, R, LDR, DWORK, DWORK, 1, RX, RANKS, TOL,
     $                   DWORK, LDWORK, INFO )
            TEMP = DNRM2( N, RX, 1 )
            PARL = ( ( FP/DELTA )/TEMP )/TEMP
C
C           For efficiency, use CONDL = 'U', if possible.
C
            IF ( .NOT.LSAME( CONDL, 'U' ) .AND. DMINO.GT.ZERO )
     $         CONDL = 'U'
         ELSE
            PARL = ZERO
         END IF
C
         IBSN = 0
         K    = 1
C
C        Calculate an upper bound, PARU, for the zero of the function.
C
         DO 70 J = 1, N
            IBSN = IBSN + 1
            IF ( J.LT.NTHS ) THEN
               SUM = DDOT( IBSN, R(K,IBSN), 1, QTB(K), 1 )
               IF ( IBSN.EQ.BSN ) THEN
                  IBSN = 0
                  K    = K + BSN
               END IF
            ELSE IF ( J.EQ.NTHS ) THEN
               SUM = DDOT( IBSN, R(K,IBSN), 1, QTB(K), 1 )
            ELSE
               SUM = DDOT( J, R(1,IBSN), 1, QTB, 1 )
            END IF
            L = IPVT(J)
            RX(J) = SUM/DIAG(L)
   70    CONTINUE
C
         GNORM = DNRM2( N, RX, 1 )
         PARU  = GNORM/DELTA
         IF ( PARU.EQ.ZERO )
     $      PARU = DWARF/MIN( DELTA, P1 )/P001
C
C        If the input PAR lies outside of the interval (PARL,PARU),
C        set PAR to the closer endpoint.
C
         PAR = MAX( PAR, PARL )
         PAR = MIN( PAR, PARU )
         IF ( PAR.EQ.ZERO )
     $      PAR = GNORM/DXNORM
C
C        Beginning of an iteration.
C
   80    CONTINUE
            ITER = ITER + 1
C
C           Evaluate the function at the current value of PAR.
C
            IF ( PAR.EQ.ZERO )
     $         PAR = MAX( DWARF, P001*PARU )
            TEMP = SQRT( PAR )
C
            DO 90 J = 1, N
               RX(J) = TEMP*DIAG(J)
   90       CONTINUE
C
C           Solve the system J*x = b , sqrt(PAR)*D*x = 0 , in a least
C           square sense.
C           The first N elements of DWORK contain the diagonal elements
C           of the upper triangular matrix S, and the next N elements
C           contain the the vector z, so that x = P*z (see NF01BQ).
C           The vector z is not preserved, to reduce the workspace.
C           The elements 2*N+1 : 2*N+ST*(N-ST) contain the
C           submatrix (S(1:N-ST,N-ST+1:N))' of the matrix S.
C           Workspace: ST*(N-ST) + 2*N,                 if CONDL <> 'E';
C                      ST*(N-ST) + 2*N + 2*MAX(BSN,ST), if CONDL =  'E'.
C
            CALL NF01BQ( CONDL, N, IPAR, LIPAR, R, LDR, IPVT, RX, QTB,
     $                   RANKS, X, TOLDEF, DWORK, LDWORK, INFO )
C
            DO 100 J = 1, N
               DWORK(N+J) = DIAG(J)*X(J)
  100       CONTINUE
C
            DXNORM = DNRM2( N, DWORK(N+1), 1 )
            TEMP   = FP
            FP     = DXNORM - DELTA
C
C           If the function is small enough, accept the current value
C           of PAR. Also test for the exceptional cases where PARL
C           is zero or the number of iterations has reached ITMAX.
C
            IF ( ABS( FP ).GT.P1*DELTA .AND.
     $         ( PARL.NE.ZERO .OR. FP.GT.TEMP .OR. TEMP.GE.ZERO ) .AND.
     $           ITER.LT.ITMAX ) THEN
C
C              Compute the Newton correction.
C
               DO 110 J = 1, N
                  L = IPVT(J)
                  RX(J) = DIAG(L)*( DWORK(N+L)/DXNORM )
  110          CONTINUE
C
               CALL NF01BR( 'Use ranks', 'Lower', 'Transpose', N, IPAR,
     $                      LIPAR, R, LDR, DWORK, DWORK(N2+1), LDS, RX,
     $                      RANKS, TOL, DWORK(JW), LDWORK-JW, INFO )
               TEMP = DNRM2( N, RX, 1 )
               PARC = ( ( FP/DELTA )/TEMP )/TEMP
C
C              Depending on the sign of the function, update PARL
C              or PARU.
C
               IF ( FP.GT.ZERO ) THEN
                  PARL = MAX( PARL, PAR )
               ELSE IF ( FP.LT.ZERO ) THEN
                  PARU = MIN( PARU, PAR )
               END IF
C
C              Compute an improved estimate for PAR.
C
               PAR = MAX( PARL, PAR + PARC )
C
C              End of an iteration.
C
               GO TO 80
            END IF
      END IF
C
C     Compute -R*P'*x = -R*z.
C
      DO 120 J = 1, N
         L     = IPVT(J)
         RX(J) = -X(L)
  120 CONTINUE
C
      DO 130 I = 1, NTHS, BSN
         CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', BSN, R(I,1),
     $               LDR, RX(I), 1 )
  130 CONTINUE
C
      IF ( ST.GT.0 ) THEN
         CALL DGEMV( 'NoTranspose', NTHS, ST, ONE, R(1,BSN+1), LDR,
     $               RX(NTHS+1), 1, ONE, RX, 1 )
         CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', ST,
     $               R(NTHS+1,BSN+1), LDR, RX(NTHS+1), 1 )
      END IF
C
C     Termination. If PAR = 0, set S.
C
      IF ( ITER.EQ.0 ) THEN
         PAR = ZERO
         I   = 1
C
         DO 150 K = 1, BN
C
            DO 140 J = 1, BSN
               DWORK(I) = R(I,J)
               CALL DCOPY( BSN-J+1, R(I,J), LDR, R(I,J), 1 )
               I = I + 1
  140       CONTINUE
C
  150    CONTINUE
C
         IF ( ST.GT.0 ) THEN
C
            DO 160 J = BSN + 1, BSN + ST
               CALL DCOPY( NTHS, R(1,J), 1, DWORK(N+J-BSN), ST )
               DWORK(I) = R(I,J)
               CALL DCOPY( BSN+ST-J+1, R(I,J), LDR, R(I,J), 1 )
               I = I + 1
  160       CONTINUE
C
         END IF
      ELSE
C
         DO 170 K = N + 1, N + ST*NTHS
            DWORK(K) = DWORK(K+N)
  170    CONTINUE
C
      END IF
C
      RETURN
C
C *** Last line of NF01BP ***
      END