1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
|
SUBROUTINE NF01BP( COND, N, IPAR, LIPAR, R, LDR, IPVT, DIAG, QTB,
$ DELTA, PAR, RANKS, X, RX, TOL, DWORK, LDWORK,
$ INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To determine a value for the Levenberg-Marquardt parameter PAR
C such that if x solves the system
C
C J*x = b , sqrt(PAR)*D*x = 0 ,
C
C in the least squares sense, where J is an m-by-n matrix, D is an
C n-by-n nonsingular diagonal matrix, and b is an m-vector, and if
C DELTA is a positive number, DXNORM is the Euclidean norm of D*x,
C then either PAR is zero and
C
C ( DXNORM - DELTA ) .LE. 0.1*DELTA ,
C
C or PAR is positive and
C
C ABS( DXNORM - DELTA ) .LE. 0.1*DELTA .
C
C The matrix J is the current Jacobian matrix of a nonlinear least
C squares problem, provided in a compressed form by SLICOT Library
C routine NF01BD. It is assumed that a block QR factorization, with
C column pivoting, of J is available, that is, J*P = Q*R, where P is
C a permutation matrix, Q has orthogonal columns, and R is an upper
C triangular matrix with diagonal elements of nonincreasing
C magnitude for each block, as returned by SLICOT Library
C routine NF01BS. The routine NF01BP needs the upper triangle of R
C in compressed form, the permutation matrix P, and the first
C n components of Q'*b (' denotes the transpose). On output,
C NF01BP also provides a compressed representation of an upper
C triangular matrix S, such that
C
C P'*(J'*J + PAR*D*D)*P = S'*S .
C
C Matrix S is used in the solution process. The matrix R has the
C following structure
C
C / R_1 0 .. 0 | L_1 \
C | 0 R_2 .. 0 | L_2 |
C | : : .. : | : | ,
C | 0 0 .. R_l | L_l |
C \ 0 0 .. 0 | R_l+1 /
C
C where the submatrices R_k, k = 1:l, have the same order BSN,
C and R_k, k = 1:l+1, are square and upper triangular. This matrix
C is stored in the compressed form
C
C / R_1 | L_1 \
C | R_2 | L_2 |
C Rc = | : | : | ,
C | R_l | L_l |
C \ X | R_l+1 /
C
C where the submatrix X is irrelevant. The matrix S has the same
C structure as R, and its diagonal blocks are denoted by S_k,
C k = 1:l+1.
C
C If l <= 1, then the full upper triangle of the matrix R is stored.
C
C ARGUMENTS
C
C Mode Parameters
C
C COND CHARACTER*1
C Specifies whether the condition of the diagonal blocks R_k
C and S_k of the matrices R and S should be estimated,
C as follows:
C = 'E' : use incremental condition estimation for each
C diagonal block of R_k and S_k to find its
C numerical rank;
C = 'N' : do not use condition estimation, but check the
C diagonal entries of R_k and S_k for zero values;
C = 'U' : use the ranks already stored in RANKS (for R).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix R. N = BN*BSN + ST >= 0.
C (See parameter description below.)
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of the
C matrix R, as follows:
C IPAR(1) must contain ST, the number of columns of the
C submatrices L_k and the order of R_l+1. ST >= 0.
C IPAR(2) must contain BN, the number of blocks, l, in the
C block diagonal part of R. BN >= 0.
C IPAR(3) must contain BSM, the number of rows of the blocks
C R_k, k = 1:l. BSM >= 0.
C IPAR(4) must contain BSN, the number of columns of the
C blocks R_k, k = 1:l. BSN >= 0.
C BSM is not used by this routine, but assumed equal to BSN.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 4.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR, NC)
C where NC = N if BN <= 1, and NC = BSN+ST, if BN > 1.
C On entry, the leading N-by-NC part of this array must
C contain the (compressed) representation (Rc) of the upper
C triangular matrix R. If BN > 1, the submatrix X in Rc is
C not referenced. The zero strict lower triangles of R_k,
C k = 1:l+1, need not be set. If BN <= 1 or BSN = 0, then
C the full upper triangle of R must be stored.
C On exit, the full upper triangles of R_k, k = 1:l+1, and
C L_k, k = 1:l, are unaltered, and the strict lower
C triangles of R_k, k = 1:l+1, contain the corresponding
C strict upper triangles (transposed) of the upper
C triangular matrix S.
C If BN <= 1 or BSN = 0, then the transpose of the strict
C upper triangle of S is stored in the strict lower triangle
C of R.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,N).
C
C IPVT (input) INTEGER array, dimension (N)
C This array must define the permutation matrix P such that
C J*P = Q*R. Column j of P is column IPVT(j) of the identity
C matrix.
C
C DIAG (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the diagonal elements of the
C matrix D. DIAG(I) <> 0, I = 1,...,N.
C
C QTB (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the first n elements of the
C vector Q'*b.
C
C DELTA (input) DOUBLE PRECISION
C An upper bound on the Euclidean norm of D*x. DELTA > 0.
C
C PAR (input/output) DOUBLE PRECISION
C On entry, PAR must contain an initial estimate of the
C Levenberg-Marquardt parameter. PAR >= 0.
C On exit, it contains the final estimate of this parameter.
C
C RANKS (input or output) INTEGER array, dimension (r), where
C r = BN + 1, if ST > 0, BSN > 0, and BN > 1;
C r = BN, if ST = 0 and BSN > 0;
C r = 1, if ST > 0 and ( BSN = 0 or BN <= 1 );
C r = 0, if ST = 0 and BSN = 0.
C On entry, if COND = 'U' and N > 0, this array must contain
C the numerical ranks of the submatrices R_k, k = 1:l(+1).
C On exit, if N > 0, this array contains the numerical ranks
C of the submatrices S_k, k = 1:l(+1).
C
C X (output) DOUBLE PRECISION array, dimension (N)
C This array contains the least squares solution of the
C system J*x = b, sqrt(PAR)*D*x = 0.
C
C RX (output) DOUBLE PRECISION array, dimension (N)
C This array contains the matrix-vector product -R*P'*x.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If COND = 'E', the tolerance to be used for finding the
C ranks of the submatrices R_k and S_k. If the user sets
C TOL > 0, then the given value of TOL is used as a lower
C bound for the reciprocal condition number; a (sub)matrix
C whose estimated condition number is less than 1/TOL is
C considered to be of full rank. If the user sets TOL <= 0,
C then an implicitly computed, default tolerance, defined by
C TOLDEF = N*EPS, is used instead, where EPS is the machine
C precision (see LAPACK Library routine DLAMCH).
C This parameter is not relevant if COND = 'U' or 'N'.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, the first N elements of this array contain the
C diagonal elements of the upper triangular matrix S.
C If BN > 1 and BSN > 0, the elements N+1 : N+ST*(N-ST)
C contain the submatrix (S(1:N-ST,N-ST+1:N))' of the
C matrix S.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 2*N, if BN <= 1 or BSN = 0 and
C COND <> 'E';
C LDWORK >= 4*N, if BN <= 1 or BSN = 0 and
C COND = 'E';
C LDWORK >= ST*(N-ST) + 2*N, if BN > 1 and BSN > 0 and
C COND <> 'E';
C LDWORK >= ST*(N-ST) + 2*N + 2*MAX(BSN,ST),
C if BN > 1 and BSN > 0 and
C COND = 'E'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The algorithm computes the Gauss-Newton direction. An approximate
C basic least squares solution is found if the Jacobian is rank
C deficient. The computations exploit the special structure and
C storage scheme of the matrix R. If one or more of the submatrices
C R_k or S_k, k = 1:l+1, is singular, then the computed result is
C not the basic least squares solution for the whole problem, but a
C concatenation of (least squares) solutions of the individual
C subproblems involving R_k or S_k, k = 1:l+1 (with adapted right
C hand sides).
C
C If the Gauss-Newton direction is not acceptable, then an iterative
C algorithm obtains improved lower and upper bounds for the
C Levenberg-Marquardt parameter PAR. Only a few iterations are
C generally needed for convergence of the algorithm. If, however,
C the limit of ITMAX = 10 iterations is reached, then the output PAR
C will contain the best value obtained so far. If the Gauss-Newton
C step is acceptable, it is stored in x, and PAR is set to zero,
C hence S = R.
C
C REFERENCES
C
C [1] More, J.J., Garbow, B.S, and Hillstrom, K.E.
C User's Guide for MINPACK-1.
C Applied Math. Division, Argonne National Laboratory, Argonne,
C Illinois, Report ANL-80-74, 1980.
C
C NUMERICAL ASPECTS
C
C The algorithm requires 0(N*(BSN+ST)) operations and is backward
C stable, if R is nonsingular.
C
C FURTHER COMMENTS
C
C This routine is a structure-exploiting, LAPACK-based modification
C of LMPAR from the MINPACK package [1], and with optional condition
C estimation. The option COND = 'U' is useful when dealing with
C several right-hand side vectors, but RANKS array should be reset.
C If COND = 'E', but the matrix S is guaranteed to be nonsingular
C and well conditioned relative to TOL, i.e., rank(R) = N, and
C min(DIAG) > 0, then its condition is not estimated.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C V. Sima, Feb. 2004.
C
C KEYWORDS
C
C Linear system of equations, matrix operations, plane rotations.
C
C ******************************************************************
C
C .. Parameters ..
INTEGER ITMAX
PARAMETER ( ITMAX = 10 )
DOUBLE PRECISION P1, P001, ZERO, ONE
PARAMETER ( P1 = 1.0D-1, P001 = 1.0D-3, ZERO = 0.0D0,
$ ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER COND
INTEGER INFO, LDR, LDWORK, LIPAR, N
DOUBLE PRECISION DELTA, PAR, TOL
C .. Array Arguments ..
INTEGER IPAR(*), IPVT(*), RANKS(*)
DOUBLE PRECISION DIAG(*), DWORK(*), QTB(*), R(LDR,*), RX(*), X(*)
C .. Local Scalars ..
INTEGER BN, BSM, BSN, I, IBSN, ITER, J, JW, K, L, LDS,
$ N2, NTHS, RANK, ST
DOUBLE PRECISION DMINO, DWARF, DXNORM, FP, GNORM, PARC, PARL,
$ PARU, SUM, TEMP, TOLDEF
LOGICAL BADRK, ECOND, NCOND, SING, UCOND
CHARACTER CONDL
C .. External Functions ..
DOUBLE PRECISION DDOT, DLAMCH, DNRM2
LOGICAL LSAME
EXTERNAL DDOT, DLAMCH, DNRM2, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMV, DTRMV, MD03BY, NF01BQ, NF01BR,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
C ..
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
ECOND = LSAME( COND, 'E' )
NCOND = LSAME( COND, 'N' )
UCOND = LSAME( COND, 'U' )
INFO = 0
N2 = 2*N
IF( .NOT.( ECOND .OR. NCOND .OR. UCOND ) ) THEN
INFO = -1
ELSEIF( N.LT.0 ) THEN
INFO = -2
ELSEIF( LIPAR.LT.4 ) THEN
INFO = -4
ELSEIF ( LDR.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSEIF( DELTA.LE.ZERO ) THEN
INFO = -10
ELSEIF( PAR.LT.ZERO ) THEN
INFO = -11
ELSE
ST = IPAR(1)
BN = IPAR(2)
BSM = IPAR(3)
BSN = IPAR(4)
NTHS = BN*BSN
IF ( MIN( ST, BN, BSM, BSN ).LT.0 ) THEN
INFO = -3
ELSEIF ( N.NE.NTHS + ST ) THEN
INFO = -2
ELSE
IF ( N.GT.0 )
$ DMINO = DIAG(1)
SING = .FALSE.
C
DO 10 J = 1, N
IF ( DIAG(J).LT.DMINO )
$ DMINO = DIAG(J)
SING = SING .OR. DIAG(J).EQ.ZERO
10 CONTINUE
C
IF ( SING ) THEN
INFO = -8
ELSEIF ( UCOND ) THEN
BADRK = .FALSE.
IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
IF ( N.GT.0 )
$ BADRK = RANKS(1).LT.0 .OR. RANKS(1).GT.N
ELSE
RANK = 0
C
DO 20 K = 1, BN
BADRK = BADRK .OR. RANKS(K).LT.0
$ .OR. RANKS(K).GT.BSN
RANK = RANK + RANKS(K)
20 CONTINUE
C
IF ( ST.GT.0 ) THEN
BADRK = BADRK .OR. RANKS(BN+1).LT.0 .OR.
$ RANKS(BN+1).GT.ST
RANK = RANK + RANKS(BN+1)
END IF
END IF
IF ( BADRK )
$ INFO = -12
ELSE
JW = N2
IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
IF ( ECOND )
$ JW = 4*N
ELSE
JW = ST*NTHS + JW
IF ( ECOND )
$ JW = 2*MAX( BSN, ST ) + JW
END IF
IF ( LDWORK.LT.JW )
$ INFO = -17
ENDIF
ENDIF
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'NF01BP', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
PAR = ZERO
RETURN
END IF
C
IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
C
C Special case: R is just an upper triangular matrix.
C Workspace: 4*N, if COND = 'E';
C 2*N, if COND <> 'E'.
C
CALL MD03BY( COND, N, R, LDR, IPVT, DIAG, QTB, DELTA, PAR,
$ RANKS(1), X, RX, TOL, DWORK, LDWORK, INFO )
RETURN
END IF
C
C General case: l > 1 and BSN > 0.
C DWARF is the smallest positive magnitude.
C
DWARF = DLAMCH( 'Underflow' )
C
C Compute and store in x the Gauss-Newton direction. If the
C Jacobian is rank-deficient, obtain a least squares solution.
C The array RX is used as workspace.
C Workspace: 2*MAX(BSN,ST), if COND = 'E';
C 0, if COND <> 'E'.
C
CALL DCOPY( N, QTB, 1, RX, 1 )
CALL NF01BR( COND, 'Upper', 'No transpose', N, IPAR, LIPAR, R,
$ LDR, DWORK, DWORK, 1, RX, RANKS, TOL, DWORK, LDWORK,
$ INFO )
C
DO 30 J = 1, N
L = IPVT(J)
X(L) = RX(J)
30 CONTINUE
C
C Initialize the iteration counter.
C Evaluate the function at the origin, and test
C for acceptance of the Gauss-Newton direction.
C
ITER = 0
C
DO 40 J = 1, N
DWORK(J) = DIAG(J)*X(J)
40 CONTINUE
C
DXNORM = DNRM2( N, DWORK, 1 )
FP = DXNORM - DELTA
IF ( FP.GT.P1*DELTA ) THEN
C
C Set an appropriate option for estimating the condition of
C the matrix S.
C
LDS = MAX( 1, ST )
JW = N2 + ST*NTHS
IF ( UCOND ) THEN
IF ( LDWORK.GE.JW + 2*MAX( BSN, ST ) ) THEN
CONDL = 'E'
TOLDEF = DBLE( N )*DLAMCH( 'Epsilon' )
ELSE
CONDL = 'N'
TOLDEF = TOL
END IF
ELSE
RANK = 0
C
DO 50 K = 1, BN
RANK = RANK + RANKS(K)
50 CONTINUE
C
IF ( ST.GT.0 )
$ RANK = RANK + RANKS(BN+1)
CONDL = COND
TOLDEF = TOL
END IF
C
C If the Jacobian is not rank deficient, the Newton
C step provides a lower bound, PARL, for the zero of
C the function. Otherwise set this bound to zero.
C
IF ( RANK.EQ.N ) THEN
C
DO 60 J = 1, N
L = IPVT(J)
RX(J) = DIAG(L)*( DWORK(L)/DXNORM )
60 CONTINUE
C
CALL NF01BR( 'Use ranks', 'Upper', 'Transpose', N, IPAR,
$ LIPAR, R, LDR, DWORK, DWORK, 1, RX, RANKS, TOL,
$ DWORK, LDWORK, INFO )
TEMP = DNRM2( N, RX, 1 )
PARL = ( ( FP/DELTA )/TEMP )/TEMP
C
C For efficiency, use CONDL = 'U', if possible.
C
IF ( .NOT.LSAME( CONDL, 'U' ) .AND. DMINO.GT.ZERO )
$ CONDL = 'U'
ELSE
PARL = ZERO
END IF
C
IBSN = 0
K = 1
C
C Calculate an upper bound, PARU, for the zero of the function.
C
DO 70 J = 1, N
IBSN = IBSN + 1
IF ( J.LT.NTHS ) THEN
SUM = DDOT( IBSN, R(K,IBSN), 1, QTB(K), 1 )
IF ( IBSN.EQ.BSN ) THEN
IBSN = 0
K = K + BSN
END IF
ELSE IF ( J.EQ.NTHS ) THEN
SUM = DDOT( IBSN, R(K,IBSN), 1, QTB(K), 1 )
ELSE
SUM = DDOT( J, R(1,IBSN), 1, QTB, 1 )
END IF
L = IPVT(J)
RX(J) = SUM/DIAG(L)
70 CONTINUE
C
GNORM = DNRM2( N, RX, 1 )
PARU = GNORM/DELTA
IF ( PARU.EQ.ZERO )
$ PARU = DWARF/MIN( DELTA, P1 )/P001
C
C If the input PAR lies outside of the interval (PARL,PARU),
C set PAR to the closer endpoint.
C
PAR = MAX( PAR, PARL )
PAR = MIN( PAR, PARU )
IF ( PAR.EQ.ZERO )
$ PAR = GNORM/DXNORM
C
C Beginning of an iteration.
C
80 CONTINUE
ITER = ITER + 1
C
C Evaluate the function at the current value of PAR.
C
IF ( PAR.EQ.ZERO )
$ PAR = MAX( DWARF, P001*PARU )
TEMP = SQRT( PAR )
C
DO 90 J = 1, N
RX(J) = TEMP*DIAG(J)
90 CONTINUE
C
C Solve the system J*x = b , sqrt(PAR)*D*x = 0 , in a least
C square sense.
C The first N elements of DWORK contain the diagonal elements
C of the upper triangular matrix S, and the next N elements
C contain the the vector z, so that x = P*z (see NF01BQ).
C The vector z is not preserved, to reduce the workspace.
C The elements 2*N+1 : 2*N+ST*(N-ST) contain the
C submatrix (S(1:N-ST,N-ST+1:N))' of the matrix S.
C Workspace: ST*(N-ST) + 2*N, if CONDL <> 'E';
C ST*(N-ST) + 2*N + 2*MAX(BSN,ST), if CONDL = 'E'.
C
CALL NF01BQ( CONDL, N, IPAR, LIPAR, R, LDR, IPVT, RX, QTB,
$ RANKS, X, TOLDEF, DWORK, LDWORK, INFO )
C
DO 100 J = 1, N
DWORK(N+J) = DIAG(J)*X(J)
100 CONTINUE
C
DXNORM = DNRM2( N, DWORK(N+1), 1 )
TEMP = FP
FP = DXNORM - DELTA
C
C If the function is small enough, accept the current value
C of PAR. Also test for the exceptional cases where PARL
C is zero or the number of iterations has reached ITMAX.
C
IF ( ABS( FP ).GT.P1*DELTA .AND.
$ ( PARL.NE.ZERO .OR. FP.GT.TEMP .OR. TEMP.GE.ZERO ) .AND.
$ ITER.LT.ITMAX ) THEN
C
C Compute the Newton correction.
C
DO 110 J = 1, N
L = IPVT(J)
RX(J) = DIAG(L)*( DWORK(N+L)/DXNORM )
110 CONTINUE
C
CALL NF01BR( 'Use ranks', 'Lower', 'Transpose', N, IPAR,
$ LIPAR, R, LDR, DWORK, DWORK(N2+1), LDS, RX,
$ RANKS, TOL, DWORK(JW), LDWORK-JW, INFO )
TEMP = DNRM2( N, RX, 1 )
PARC = ( ( FP/DELTA )/TEMP )/TEMP
C
C Depending on the sign of the function, update PARL
C or PARU.
C
IF ( FP.GT.ZERO ) THEN
PARL = MAX( PARL, PAR )
ELSE IF ( FP.LT.ZERO ) THEN
PARU = MIN( PARU, PAR )
END IF
C
C Compute an improved estimate for PAR.
C
PAR = MAX( PARL, PAR + PARC )
C
C End of an iteration.
C
GO TO 80
END IF
END IF
C
C Compute -R*P'*x = -R*z.
C
DO 120 J = 1, N
L = IPVT(J)
RX(J) = -X(L)
120 CONTINUE
C
DO 130 I = 1, NTHS, BSN
CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', BSN, R(I,1),
$ LDR, RX(I), 1 )
130 CONTINUE
C
IF ( ST.GT.0 ) THEN
CALL DGEMV( 'NoTranspose', NTHS, ST, ONE, R(1,BSN+1), LDR,
$ RX(NTHS+1), 1, ONE, RX, 1 )
CALL DTRMV( 'Upper', 'NoTranspose', 'NonUnit', ST,
$ R(NTHS+1,BSN+1), LDR, RX(NTHS+1), 1 )
END IF
C
C Termination. If PAR = 0, set S.
C
IF ( ITER.EQ.0 ) THEN
PAR = ZERO
I = 1
C
DO 150 K = 1, BN
C
DO 140 J = 1, BSN
DWORK(I) = R(I,J)
CALL DCOPY( BSN-J+1, R(I,J), LDR, R(I,J), 1 )
I = I + 1
140 CONTINUE
C
150 CONTINUE
C
IF ( ST.GT.0 ) THEN
C
DO 160 J = BSN + 1, BSN + ST
CALL DCOPY( NTHS, R(1,J), 1, DWORK(N+J-BSN), ST )
DWORK(I) = R(I,J)
CALL DCOPY( BSN+ST-J+1, R(I,J), LDR, R(I,J), 1 )
I = I + 1
160 CONTINUE
C
END IF
ELSE
C
DO 170 K = N + 1, N + ST*NTHS
DWORK(K) = DWORK(K+N)
170 CONTINUE
C
END IF
C
RETURN
C
C *** Last line of NF01BP ***
END
|