1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
SUBROUTINE NF01BQ( COND, N, IPAR, LIPAR, R, LDR, IPVT, DIAG, QTB,
$ RANKS, X, TOL, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To determine a vector x which solves the system of linear
C equations
C
C J*x = b , D*x = 0 ,
C
C in the least squares sense, where J is an m-by-n matrix,
C D is an n-by-n diagonal matrix, and b is an m-vector. The matrix J
C is the current Jacobian of a nonlinear least squares problem,
C provided in a compressed form by SLICOT Library routine NF01BD.
C It is assumed that a block QR factorization, with column pivoting,
C of J is available, that is, J*P = Q*R, where P is a permutation
C matrix, Q has orthogonal columns, and R is an upper triangular
C matrix with diagonal elements of nonincreasing magnitude for each
C block, as returned by SLICOT Library routine NF01BS. The routine
C NF01BQ needs the upper triangle of R in compressed form, the
C permutation matrix P, and the first n components of Q'*b
C (' denotes the transpose). The system J*x = b, D*x = 0, is then
C equivalent to
C
C R*z = Q'*b , P'*D*P*z = 0 , (1)
C
C where x = P*z. If this system does not have full rank, then an
C approximate least squares solution is obtained (see METHOD).
C On output, NF01BQ also provides an upper triangular matrix S
C such that
C
C P'*(J'*J + D*D)*P = S'*S .
C
C The system (1) is equivalent to S*z = c , where c contains the
C first n components of the vector obtained by applying to
C [ (Q'*b)' 0 ]' the transformations which triangularized
C [ R' P'*D*P ]', getting S.
C
C The matrix R has the following structure
C
C / R_1 0 .. 0 | L_1 \
C | 0 R_2 .. 0 | L_2 |
C | : : .. : | : | ,
C | 0 0 .. R_l | L_l |
C \ 0 0 .. 0 | R_l+1 /
C
C where the submatrices R_k, k = 1:l, have the same order BSN,
C and R_k, k = 1:l+1, are square and upper triangular. This matrix
C is stored in the compressed form
C
C / R_1 | L_1 \
C | R_2 | L_2 |
C Rc = | : | : | ,
C | R_l | L_l |
C \ X | R_l+1 /
C
C where the submatrix X is irrelevant. The matrix S has the same
C structure as R, and its diagonal blocks are denoted by S_k,
C k = 1:l+1.
C
C If l <= 1, then the full upper triangle of the matrix R is stored.
C
C ARGUMENTS
C
C Mode Parameters
C
C COND CHARACTER*1
C Specifies whether the condition of the matrices S_k should
C be estimated, as follows:
C = 'E' : use incremental condition estimation and store
C the numerical rank of S_k in the array entry
C RANKS(k), for k = 1:l+1;
C = 'N' : do not use condition estimation, but check the
C diagonal entries of S_k for zero values;
C = 'U' : use the ranks already stored in RANKS(1:l+1).
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix R. N = BN*BSN + ST >= 0.
C (See parameter description below.)
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of the
C matrix R, as follows:
C IPAR(1) must contain ST, the number of columns of the
C submatrices L_k and the order of R_l+1. ST >= 0.
C IPAR(2) must contain BN, the number of blocks, l, in the
C block diagonal part of R. BN >= 0.
C IPAR(3) must contain BSM, the number of rows of the blocks
C R_k, k = 1:l. BSM >= 0.
C IPAR(4) must contain BSN, the number of columns of the
C blocks R_k, k = 1:l. BSN >= 0.
C BSM is not used by this routine, but assumed equal to BSN.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 4.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR, NC)
C where NC = N if BN <= 1, and NC = BSN+ST, if BN > 1.
C On entry, the leading N-by-NC part of this array must
C contain the (compressed) representation (Rc) of the upper
C triangular matrix R. If BN > 1, the submatrix X in Rc is
C not referenced. The zero strict lower triangles of R_k,
C k = 1:l+1, need not be set. If BN <= 1 or BSN = 0, then
C the full upper triangle of R must be stored.
C On exit, the full upper triangles of R_k, k = 1:l+1, and
C L_k, k = 1:l, are unaltered, and the strict lower
C triangles of R_k, k = 1:l+1, contain the corresponding
C strict upper triangles (transposed) of the upper
C triangular matrix S.
C If BN <= 1 or BSN = 0, then the transpose of the strict
C upper triangle of S is stored in the strict lower triangle
C of R.
C
C LDR INTEGER
C The leading dimension of the array R. LDR >= MAX(1,N).
C
C IPVT (input) INTEGER array, dimension (N)
C This array must define the permutation matrix P such that
C J*P = Q*R. Column j of P is column IPVT(j) of the identity
C matrix.
C
C DIAG (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the diagonal elements of the
C matrix D.
C
C QTB (input) DOUBLE PRECISION array, dimension (N)
C This array must contain the first n elements of the
C vector Q'*b.
C
C RANKS (input or output) INTEGER array, dimension (r), where
C r = BN + 1, if ST > 0, BSN > 0, and BN > 1;
C r = BN, if ST = 0 and BSN > 0;
C r = 1, if ST > 0 and ( BSN = 0 or BN <= 1 );
C r = 0, if ST = 0 and BSN = 0.
C On entry, if COND = 'U' and N > 0, this array must contain
C the numerical ranks of the submatrices S_k, k = 1:l(+1).
C On exit, if COND = 'E' or 'N' and N > 0, this array
C contains the numerical ranks of the submatrices S_k,
C k = 1:l(+1), estimated according to the value of COND.
C
C X (output) DOUBLE PRECISION array, dimension (N)
C This array contains the least squares solution of the
C system J*x = b, D*x = 0.
C
C Tolerances
C
C TOL DOUBLE PRECISION
C If COND = 'E', the tolerance to be used for finding the
C ranks of the submatrices S_k. If the user sets TOL > 0,
C then the given value of TOL is used as a lower bound for
C the reciprocal condition number; a (sub)matrix whose
C estimated condition number is less than 1/TOL is
C considered to be of full rank. If the user sets TOL <= 0,
C then an implicitly computed, default tolerance, defined by
C TOLDEF = N*EPS, is used instead, where EPS is the machine
C precision (see LAPACK Library routine DLAMCH).
C This parameter is not relevant if COND = 'U' or 'N'.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, the first N elements of this array contain the
C diagonal elements of the upper triangular matrix S, and
C the next N elements contain the solution z.
C If BN > 1 and BSN > 0, the elements 2*N+1 : 2*N+ST*(N-ST)
C contain the submatrix (S(1:N-ST,N-ST+1:N))' of the
C matrix S.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 2*N, if BN <= 1 or BSN = 0 and
C COND <> 'E';
C LDWORK >= 4*N, if BN <= 1 or BSN = 0 and
C COND = 'E';
C LDWORK >= ST*(N-ST) + 2*N, if BN > 1 and BSN > 0 and
C COND <> 'E';
C LDWORK >= ST*(N-ST) + 2*N + 2*MAX(BSN,ST),
C if BN > 1 and BSN > 0 and
C COND = 'E'.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C Standard plane rotations are used to annihilate the elements of
C the diagonal matrix D, updating the upper triangular matrix R
C and the first n elements of the vector Q'*b. A basic least squares
C solution is computed. The computations exploit the special
C structure and storage scheme of the matrix R. If one or more of
C the submatrices S_k, k = 1:l+1, is singular, then the computed
C result is not the basic least squares solution for the whole
C problem, but a concatenation of (least squares) solutions of the
C individual subproblems involving R_k, k = 1:l+1 (with adapted
C right hand sides).
C
C REFERENCES
C
C [1] More, J.J., Garbow, B.S, and Hillstrom, K.E.
C User's Guide for MINPACK-1.
C Applied Math. Division, Argonne National Laboratory, Argonne,
C Illinois, Report ANL-80-74, 1980.
C
C NUMERICAL ASPECTS
C
C The algorithm requires 0(N*(BSN+ST)) operations and is backward
C stable, if R is nonsingular.
C
C FURTHER COMMENTS
C
C This routine is a structure-exploiting, LAPACK-based modification
C of QRSOLV from the MINPACK package [1], and with optional
C condition estimation.
C The option COND = 'U' is useful when dealing with several
C right-hand side vectors.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2001.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Linear system of equations, matrix operations, plane rotations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER COND
INTEGER INFO, LDR, LDWORK, LIPAR, N
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IPAR(*), IPVT(*), RANKS(*)
DOUBLE PRECISION DIAG(*), DWORK(*), QTB(*), R(LDR,*), X(*)
C .. Local Scalars ..
DOUBLE PRECISION QTBPJ
INTEGER BN, BSM, BSN, I, IB, IBSN, IS, ITC, ITR, J,
$ JW, K, KF, L, NC, NTHS, ST
LOGICAL ECOND
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DSWAP, MB02YD, MB04OW, NF01BR, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Executable Statements ..
C
C Check the scalar input parameters.
C
ECOND = LSAME( COND, 'E' )
INFO = 0
IF( .NOT.( ECOND .OR. LSAME( COND, 'N' ) .OR.
$ LSAME( COND, 'U' ) ) ) THEN
INFO = -1
ELSEIF( N.LT.0 ) THEN
INFO = -2
ELSEIF( LIPAR.LT.4 ) THEN
INFO = -4
ELSE
ST = IPAR(1)
BN = IPAR(2)
BSM = IPAR(3)
BSN = IPAR(4)
NTHS = BN*BSN
IF ( MIN( ST, BN, BSM, BSN ).LT.0 ) THEN
INFO = -3
ELSEIF ( N.NE.NTHS + ST ) THEN
INFO = -2
ELSEIF ( LDR.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE
JW = 2*N
IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
IF ( ECOND )
$ JW = 4*N
ELSE
JW = ST*NTHS + JW
IF ( ECOND )
$ JW = 2*MAX( BSN, ST ) + JW
END IF
IF ( LDWORK.LT.JW )
$ INFO = -14
ENDIF
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'NF01BQ', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( N.EQ.0 )
$ RETURN
C
IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
C
C Special case: R is an upper triangular matrix.
C Workspace: 4*N, if COND = 'E';
C 2*N, if COND <> 'E'.
C
CALL MB02YD( COND, N, R, LDR, IPVT, DIAG, QTB, RANKS(1), X,
$ TOL, DWORK, LDWORK, INFO )
RETURN
END IF
C
C General case: BN > 1 and BSN > 0.
C Copy R and Q'*b to preserve input and initialize S.
C In particular, save the diagonal elements of R in X.
C
IB = N + 1
IS = IB + N
JW = IS + ST*NTHS
I = 1
L = IS
NC = BSN + ST
KF = NC
C
DO 20 K = 1, BN
C
DO 10 J = 1, BSN
X(I) = R(I,J)
CALL DCOPY( BSN-J+1, R(I,J), LDR, R(I,J), 1 )
I = I + 1
10 CONTINUE
C
20 CONTINUE
C
C DWORK(IS) contains a copy of [ L_1' ... L_l' ].
C Workspace: ST*(N-ST)+2*N;
C
DO 30 J = BSN + 1, NC
CALL DCOPY( NTHS, R(1,J), 1, DWORK(L), ST )
X(I) = R(I,J)
CALL DCOPY( NC-J+1, R(I,J), LDR, R(I,J), 1 )
I = I + 1
L = L + 1
30 CONTINUE
C
CALL DCOPY( N, QTB, 1, DWORK(IB), 1 )
IF ( ST.GT.0 ) THEN
ITR = NTHS + 1
ITC = BSN + 1
ELSE
ITR = 1
ITC = 1
END IF
IBSN = 0
C
C Eliminate the diagonal matrix D using Givens rotations.
C
DO 50 J = 1, N
IBSN = IBSN + 1
I = IBSN
C
C Prepare the row of D to be eliminated, locating the
C diagonal element using P from the QR factorization.
C
L = IPVT(J)
IF ( DIAG(L).NE.ZERO ) THEN
QTBPJ = ZERO
DWORK(J) = DIAG(L)
C
DO 40 K = J + 1, MIN( J + KF - 1, N )
DWORK(K) = ZERO
40 CONTINUE
C
C The transformations to eliminate the row of D modify only
C a single element of Q'*b beyond the first n, which is
C initially zero.
C
IF ( J.LT.NTHS ) THEN
CALL MB04OW( BSN-IBSN+1, ST, 1, R(J,IBSN), LDR,
$ R(ITR,ITC), LDR, DWORK(J), 1, DWORK(IB+J-1),
$ BSN, DWORK(IB+NTHS), ST, QTBPJ, 1 )
IF ( IBSN.EQ.BSN )
$ IBSN = 0
ELSE IF ( J.EQ.NTHS ) THEN
CALL MB04OW( 1, ST, 1, R(J,IBSN), LDR, R(ITR,ITC), LDR,
$ DWORK(J), 1, DWORK(IB+J-1), BSN,
$ DWORK(IB+NTHS), ST, QTBPJ, 1 )
KF = ST
ELSE
CALL MB04OW( 0, N-J+1, 1, R(J,IBSN), LDR, R(J,IBSN), LDR,
$ DWORK(J), 1, DWORK(IB+J-1), 1,
$ DWORK(IB+J-1), ST, QTBPJ, 1 )
END IF
ELSE
IF ( J.LT.NTHS ) THEN
IF ( IBSN.EQ.BSN )
$ IBSN = 0
ELSE IF ( J.EQ.NTHS ) THEN
KF = ST
END IF
END IF
C
C Store the diagonal element of S.
C
DWORK(J) = R(J,I)
50 CONTINUE
C
C Solve the triangular system for z. If the system is singular,
C then obtain an approximate least squares solution.
C Additional workspace: 2*MAX(BSN,ST), if COND = 'E';
C 0, if COND <> 'E'.
C
CALL NF01BR( COND, 'Upper', 'NoTranspose', N, IPAR, LIPAR, R, LDR,
$ DWORK, DWORK(IS), 1, DWORK(IB), RANKS, TOL,
$ DWORK(JW), LDWORK-JW+1, INFO )
I = 1
C
C Restore the diagonal elements of R from X and interchange
C the upper and lower triangular parts of R.
C
DO 70 K = 1, BN
C
DO 60 J = 1, BSN
R(I,J) = X(I)
CALL DSWAP( BSN-J+1, R(I,J), LDR, R(I,J), 1 )
I = I + 1
60 CONTINUE
C
70 CONTINUE
C
DO 80 J = BSN + 1, NC
CALL DSWAP( NTHS, R(1,J), 1, DWORK(IS), ST )
R(I,J) = X(I)
CALL DSWAP( NC-J+1, R(I,J), LDR, R(I,J), 1 )
I = I + 1
IS = IS + 1
80 CONTINUE
C
C Permute the components of z back to components of x.
C
DO 90 J = 1, N
L = IPVT(J)
X(L) = DWORK(N+J)
90 CONTINUE
C
RETURN
C
C *** Last line of NF01BQ ***
END
|