1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
SUBROUTINE NF01BU( STOR, UPLO, N, IPAR, LIPAR, DPAR, LDPAR, J,
$ LDJ, JTJ, LDJTJ, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrix J'*J + c*I, for the Jacobian J as received
C from SLICOT Library routine NF01BD:
C
C / dy(1)/dwb(1) | dy(1)/dtheta \
C Jc = | : | : | .
C \ dy(L)/dwb(L) | dy(L)/dtheta /
C
C This is a compressed representation of the actual structure
C
C / J_1 0 .. 0 | L_1 \
C | 0 J_2 .. 0 | L_2 |
C J = | : : .. : | : | .
C | : : .. : | : |
C \ 0 0 .. J_L | L_L /
C
C ARGUMENTS
C
C Mode Parameters
C
C STOR CHARACTER*1
C Specifies the storage scheme for the symmetric
C matrix J'*J + c*I, as follows:
C = 'F' : full storage is used;
C = 'P' : packed storage is used.
C
C UPLO CHARACTER*1
C Specifies which part of the matrix J'*J + c*I is stored,
C as follows:
C = 'U' : the upper triagular part is stored;
C = 'L' : the lower triagular part is stored.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix J'*J + c*I.
C N = BN*BSN + ST >= 0. (See parameter description below.)
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of the
C matrix J, as follows:
C IPAR(1) must contain ST, the number of parameters
C corresponding to the linear part. ST >= 0.
C IPAR(2) must contain BN, the number of blocks, BN = L,
C for the parameters corresponding to the nonlinear
C part. BN >= 0.
C IPAR(3) must contain BSM, the number of rows of the blocks
C J_k = dy(k)/dwb(k), k = 1:BN, if BN > 0, or the
C number of rows of the matrix J, if BN <= 1.
C IPAR(4) must contain BSN, the number of columns of the
C blocks J_k, k = 1:BN. BSN >= 0.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 4.
C
C DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
C The real parameters needed for solving the problem.
C The entry DPAR(1) must contain the real scalar c.
C
C LDPAR (input) INTEGER
C The length of the array DPAR. LDPAR >= 1.
C
C J (input) DOUBLE PRECISION array, dimension (LDJ, NC)
C where NC = N if BN <= 1, and NC = BSN+ST, if BN > 1.
C The leading NR-by-NC part of this array must contain
C the (compressed) representation (Jc) of the Jacobian
C matrix J, where NR = BSM if BN <= 1, and NR = BN*BSM,
C if BN > 1.
C
C LDJ (input) INTEGER
C The leading dimension of array J. LDJ >= MAX(1,NR).
C
C JTJ (output) DOUBLE PRECISION array,
C dimension (LDJTJ,N), if STOR = 'F',
C dimension (N*(N+1)/2), if STOR = 'P'.
C The leading N-by-N (if STOR = 'F'), or N*(N+1)/2 (if
C STOR = 'P') part of this array contains the upper or
C lower triangle of the matrix J'*J + c*I, depending on
C UPLO = 'U', or UPLO = 'L', respectively, stored either as
C a two-dimensional, or one-dimensional array, depending
C on STOR.
C
C LDJTJ INTEGER
C The leading dimension of the array JTJ.
C LDJTJ >= MAX(1,N), if STOR = 'F'.
C LDJTJ >= 1, if STOR = 'P'.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C Currently, this array is not used.
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= 0.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The matrix product is computed columnn-wise, exploiting the
C symmetry. BLAS 3 routines DGEMM and DSYRK are used if STOR = 'F',
C and BLAS 2 routine DGEMV is used if STOR = 'P'.
C
C CONTRIBUTORS
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2001.
C
C REVISIONS
C
C V. Sima, Dec. 2001, Mar. 2002.
C
C KEYWORDS
C
C Elementary matrix operations, matrix algebra, matrix operations,
C Wiener system.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER STOR, UPLO
INTEGER INFO, LDJ, LDJTJ, LDPAR, LDWORK, LIPAR, N
C .. Array Arguments ..
DOUBLE PRECISION DPAR(*), DWORK(*), J(LDJ,*), JTJ(*)
INTEGER IPAR(*)
C .. Local Scalars ..
LOGICAL FULL, UPPER
INTEGER BN, BSM, BSN, I1, IBSM, IBSN, II, JL, K, M,
$ NBSN, NTHS, ST
DOUBLE PRECISION C
C .. Local Arrays ..
DOUBLE PRECISION TMP(1)
INTEGER ITMP(1)
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DGEMV, DLASET, DSYRK, NF01BV,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Executable Statements ..
C
INFO = 0
C
FULL = LSAME( STOR, 'F' )
UPPER = LSAME( UPLO, 'U' )
C
IF( .NOT.( FULL .OR. LSAME( STOR, 'P' ) ) ) THEN
INFO = -1
ELSEIF ( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
INFO = -2
ELSEIF ( N.LT.0 ) THEN
INFO = -3
ELSEIF ( LIPAR.LT.4 ) THEN
INFO = -5
ELSEIF ( LDPAR.LT.1 ) THEN
INFO = -7
ELSEIF ( LDJTJ.LT.1 .OR. ( FULL .AND. LDJTJ.LT.N ) ) THEN
INFO = -11
ELSEIF ( LDWORK.LT.0 ) THEN
INFO = -13
ELSE
ST = IPAR(1)
BN = IPAR(2)
BSM = IPAR(3)
BSN = IPAR(4)
NTHS = BN*BSN
IF ( BN.GT.1 ) THEN
M = BN*BSM
ELSE
M = BSM
END IF
IF ( MIN( ST, BN, BSM, BSN ).LT.0 ) THEN
INFO = -4
ELSEIF ( N.NE.NTHS + ST ) THEN
INFO = -3
ELSEIF ( LDJ.LT.MAX( 1, M ) ) THEN
INFO = -9
END IF
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'NF01BU', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( N.EQ.0 )
$ RETURN
C
C = DPAR(1)
C
IF ( BN.LE.1 .OR. BSN.EQ.0 .OR. BSM.EQ.0 ) THEN
C
C Special case, l <= 1 or BSN = 0 or BSM = 0: the Jacobian is
C represented as a full matrix.
C
ITMP(1) = M
CALL NF01BV( STOR, UPLO, N, ITMP, 1, DPAR, 1, J, LDJ, JTJ,
$ LDJTJ, DWORK, LDWORK, INFO )
RETURN
END IF
C
C General case: l > 1, BSN > 0, BSM > 0.
C
JL = BSN + 1
C
IF ( FULL ) THEN
C
NBSN = N*BSN
C
IF ( UPPER ) THEN
C
C Compute the leading upper triangular part (full storage).
C
CALL DLASET( UPLO, BSN, BSN, ZERO, C, JTJ, LDJTJ )
CALL DSYRK( UPLO, 'Transpose', BSN, BSM, ONE, J, LDJ, ONE,
$ JTJ, LDJTJ )
IBSN = BSN
I1 = NBSN + 1
C
DO 10 IBSM = BSM + 1, M, BSM
II = I1 + IBSN
CALL DLASET( 'Full', IBSN, BSN, ZERO, ZERO, JTJ(I1),
$ LDJTJ )
I1 = I1 + NBSN
CALL DLASET( UPLO, BSN, BSN, ZERO, C, JTJ(II), LDJTJ )
CALL DSYRK( UPLO, 'Transpose', BSN, BSM, ONE, J(IBSM,1),
$ LDJ, ONE, JTJ(II), LDJTJ )
IBSN = IBSN + BSN
10 CONTINUE
C
IF ( ST.GT.0 ) THEN
C
C Compute the last block column.
C
DO 20 IBSM = 1, M, BSM
CALL DGEMM( 'Transpose', 'NoTranspose', BSN, ST, BSM,
$ ONE, J(IBSM,1), LDJ, J(IBSM,JL), LDJ,
$ ZERO, JTJ(I1), LDJTJ )
I1 = I1 + BSN
20 CONTINUE
C
CALL DLASET( UPLO, ST, ST, ZERO, C, JTJ(I1), LDJTJ )
CALL DSYRK( UPLO, 'Transpose', ST, M, ONE, J(1,JL),
$ LDJ, ONE, JTJ(I1), LDJTJ )
END IF
C
ELSE
C
C Compute the leading lower triangular part (full storage).
C
IBSN = NTHS
II = 1
C
DO 30 IBSM = 1, M, BSM
I1 = II + BSN
CALL DLASET( UPLO, BSN, BSN, ZERO, C, JTJ(II), LDJTJ )
CALL DSYRK( UPLO, 'Transpose', BSN, BSM, ONE, J(IBSM,1),
$ LDJ, ONE, JTJ(II), LDJTJ )
IBSN = IBSN - BSN
CALL DLASET( 'Full', IBSN, BSN, ZERO, ZERO, JTJ(I1),
$ LDJTJ )
II = I1 + NBSN
IF ( ST.GT.0 )
$ CALL DGEMM( 'Transpose', 'NoTranspose', ST, BSN, BSM,
$ ONE, J(IBSM,JL), LDJ, J(IBSM,1), LDJ,
$ ZERO, JTJ(I1+IBSN), LDJTJ )
30 CONTINUE
C
IF ( ST.GT.0 ) THEN
C
C Compute the last diagonal block.
C
CALL DLASET( UPLO, ST, ST, ZERO, C, JTJ(II), LDJTJ )
CALL DSYRK( UPLO, 'Transpose', ST, M, ONE, J(1,JL),
$ LDJ, ONE, JTJ(II), LDJTJ )
END IF
C
END IF
C
ELSE
C
TMP(1) = ZERO
C
IF ( UPPER ) THEN
C
C Compute the leading upper triangular part (packed storage).
C
IBSN = 0
I1 = 1
C
DO 50 IBSM = 1, M, BSM
C
DO 40 K = 1, BSN
II = I1 + IBSN
CALL DCOPY( IBSN, TMP, 0, JTJ(I1), 1 )
CALL DGEMV( 'Transpose', BSM, K, ONE, J(IBSM,1), LDJ,
$ J(IBSM,K), 1, ZERO, JTJ(II), 1 )
I1 = II + K
JTJ(I1-1) = JTJ(I1-1) + C
40 CONTINUE
C
IBSN = IBSN + BSN
50 CONTINUE
C
C Compute the last block column.
C
DO 70 K = 1, ST
C
DO 60 IBSM = 1, M, BSM
CALL DGEMV( 'Transpose', BSM, BSN, ONE, J(IBSM,1),
$ LDJ, J(IBSM,BSN+K), 1, ZERO, JTJ(I1), 1 )
I1 = I1 + BSN
60 CONTINUE
C
CALL DGEMV( 'Transpose', M, K, ONE, J(1,JL), LDJ,
$ J(1,BSN+K), 1, ZERO, JTJ(I1), 1 )
I1 = I1 + K
JTJ(I1-1) = JTJ(I1-1) + C
70 CONTINUE
C
ELSE
C
C Compute the leading lower triangular part (packed storage).
C
IBSN = NTHS
II = 1
C
DO 90 IBSM = 1, M, BSM
IBSN = IBSN - BSN
C
DO 80 K = 1, BSN
I1 = II + BSN - K + 1
CALL DCOPY( IBSN, TMP, 0, JTJ(I1), 1 )
CALL DGEMV( 'Transpose', BSM, BSN-K+1, ONE, J(IBSM,K),
$ LDJ, J(IBSM,K), 1, ZERO, JTJ(II), 1 )
JTJ(II) = JTJ(II) + C
I1 = I1 + IBSN
II = I1 + ST
IF ( ST.GT.0 )
$ CALL DGEMV( 'Transpose', BSM, ST, ONE, J(IBSM,JL),
$ LDJ, J(IBSM,K), 1, ZERO, JTJ(I1), 1 )
80 CONTINUE
C
90 CONTINUE
C
C Compute the last diagonal block.
C
DO 100 K = 1, ST
CALL DGEMV( 'Transpose', M, ST-K+1, ONE, J(1,BSN+K), LDJ,
$ J(1,BSN+K), 1, ZERO, JTJ(II), 1 )
JTJ(II) = JTJ(II) + C
II = II + ST - K + 1
100 CONTINUE
C
END IF
C
END IF
C
RETURN
C
C *** Last line of NF01BU ***
END
|