1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
SUBROUTINE NF01BW( N, IPAR, LIPAR, DPAR, LDPAR, J, LDJ, X, INCX,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the matrix-vector product x <-- (J'*J + c*I)*x, for the
C Jacobian J as received from SLICOT Library routine NF01BD:
C
C / dy(1)/dwb(1) | dy(1)/dtheta \
C Jc = | : | : | .
C \ dy(L)/dwb(L) | dy(L)/dtheta /
C
C This is a compressed representation of the actual structure
C
C / J_1 0 .. 0 | L_1 \
C | 0 J_2 .. 0 | L_2 |
C J = | : : .. : | : | .
C | : : .. : | : |
C \ 0 0 .. J_L | L_L /
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The dimension of the vector x.
C N = BN*BSN + ST >= 0. (See parameter description below.)
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of the
C matrix J, as follows:
C IPAR(1) must contain ST, the number of parameters
C corresponding to the linear part. ST >= 0.
C IPAR(2) must contain BN, the number of blocks, BN = L,
C for the parameters corresponding to the nonlinear
C part. BN >= 0.
C IPAR(3) must contain BSM, the number of rows of the blocks
C J_k = dy(k)/dwb(k), k = 1:BN, if BN > 0, or the
C number of rows of the matrix J, if BN <= 1.
C IPAR(4) must contain BSN, the number of columns of the
C blocks J_k, k = 1:BN. BSN >= 0.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 4.
C
C DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
C The real parameters needed for solving the problem.
C The entry DPAR(1) must contain the real scalar c.
C
C LDPAR (input) INTEGER
C The length of the array DPAR. LDPAR >= 1.
C
C J (input) DOUBLE PRECISION array, dimension (LDJ, NC)
C where NC = N if BN <= 1, and NC = BSN+ST, if BN > 1.
C The leading NR-by-NC part of this array must contain
C the (compressed) representation (Jc) of the Jacobian
C matrix J, where NR = BSM if BN <= 1, and NR = BN*BSM,
C if BN > 1.
C
C LDJ (input) INTEGER
C The leading dimension of array J. LDJ >= MAX(1,NR).
C
C X (input/output) DOUBLE PRECISION array, dimension
C (1+(N-1)*INCX)
C On entry, this incremented array must contain the
C vector x.
C On exit, this incremented array contains the value of the
C matrix-vector product (J'*J + c*I)*x.
C
C INCX (input) INTEGER
C The increment for the elements of X. INCX >= 1.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= NR.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The associativity of matrix multiplications is used; the result
C is obtained as: x_out = J'*( J*x ) + c*x.
C
C CONTRIBUTORS
C
C A. Riedel, R. Schneider, Chemnitz University of Technology,
C Mar. 2001, during a stay at University of Twente, NL.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2001,
C Mar. 2002.
C
C KEYWORDS
C
C Elementary matrix operations, matrix algebra, matrix operations,
C Wiener system.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INCX, INFO, LDJ, LDPAR, LDWORK, LIPAR, N
C .. Array Arguments ..
DOUBLE PRECISION DPAR(*), DWORK(*), J(LDJ,*), X(*)
INTEGER IPAR(*)
C .. Local Scalars ..
INTEGER BN, BSM, BSN, IBSM, IBSN, IX, JL, M, NTHS, ST,
$ XL
DOUBLE PRECISION C
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMV, DSCAL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX, MIN
C ..
C .. Executable Statements ..
C
INFO = 0
C
IF ( N.LT.0 ) THEN
INFO = -1
ELSEIF ( LIPAR.LT.4 ) THEN
INFO = -3
ELSEIF ( LDPAR.LT.1 ) THEN
INFO = -5
ELSEIF ( INCX.LT.1 ) THEN
INFO = -9
ELSE
ST = IPAR(1)
BN = IPAR(2)
BSM = IPAR(3)
BSN = IPAR(4)
NTHS = BN*BSN
IF ( BN.GT.1 ) THEN
M = BN*BSM
ELSE
M = BSM
END IF
IF ( MIN( ST, BN, BSM, BSN ).LT.0 ) THEN
INFO = -2
ELSEIF ( N.NE.NTHS + ST ) THEN
INFO = -1
ELSEIF ( LDJ.LT.MAX( 1, M ) ) THEN
INFO = -7
ELSEIF ( LDWORK.LT.M ) THEN
INFO = -11
END IF
END IF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'NF01BW', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( N.EQ.0 )
$ RETURN
C
C = DPAR(1)
C
IF ( M.EQ.0 ) THEN
C
C Special case, void Jacobian: x <-- c*x.
C
CALL DSCAL( N, C, X, INCX )
RETURN
END IF
C
IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
C
C Special case, l <= 1 or BSN = 0: the Jacobian is represented
C as a full matrix. Adapted code from NF01BX is included in-line.
C
CALL DGEMV( 'NoTranspose', M, N, ONE, J, LDJ, X, INCX, ZERO,
$ DWORK, 1 )
CALL DGEMV( 'Transpose', M, N, ONE, J, LDJ, DWORK, 1, C, X,
$ INCX )
RETURN
END IF
C
C General case: l > 1, BSN > 0, BSM > 0.
C
JL = BSN + 1
IX = BSN*INCX
XL = BN*IX + 1
C
IF ( ST.GT.0 ) THEN
CALL DGEMV( 'NoTranspose', M, ST, ONE, J(1,JL), LDJ, X(XL),
$ INCX, ZERO, DWORK, 1 )
ELSE
DWORK(1) = ZERO
CALL DCOPY( M, DWORK(1), 0, DWORK, 1 )
END IF
IBSN = 1
C
DO 10 IBSM = 1, M, BSM
CALL DGEMV( 'NoTranspose', BSM, BSN, ONE, J(IBSM,1), LDJ,
$ X(IBSN), INCX, ONE, DWORK(IBSM), 1 )
CALL DGEMV( 'Transpose', BSM, BSN, ONE, J(IBSM,1), LDJ,
$ DWORK(IBSM), 1, C, X(IBSN), INCX )
IBSN = IBSN + IX
10 CONTINUE
C
IF ( ST.GT.0 )
$ CALL DGEMV( 'Transpose', M, ST, ONE, J(1,JL), LDJ, DWORK, 1, C,
$ X(XL), INCX )
C
RETURN
C
C *** Last line of NF01BW ***
END
|