File: NF01BW.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (242 lines) | stat: -rw-r--r-- 7,705 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
      SUBROUTINE NF01BW( N, IPAR, LIPAR, DPAR, LDPAR, J, LDJ, X, INCX,
     $                   DWORK, LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute the matrix-vector product x <-- (J'*J + c*I)*x, for the
C     Jacobian J as received from SLICOT Library routine NF01BD:
C
C          /  dy(1)/dwb(1)  |  dy(1)/dtheta  \
C     Jc = |       :        |       :        | .
C          \  dy(L)/dwb(L)  |  dy(L)/dtheta  /
C
C     This is a compressed representation of the actual structure
C
C         /   J_1    0    ..   0   |  L_1  \
C         |    0    J_2   ..   0   |  L_2  |
C     J = |    :     :    ..   :   |   :   | .
C         |    :     :    ..   :   |   :   |
C         \    0     0    ..  J_L  |  L_L  /
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The dimension of the vector x.
C             N = BN*BSN + ST >= 0.  (See parameter description below.)
C
C     IPAR    (input) INTEGER array, dimension (LIPAR)
C             The integer parameters describing the structure of the
C             matrix J, as follows:
C             IPAR(1) must contain ST, the number of parameters
C                     corresponding to the linear part.  ST >= 0.
C             IPAR(2) must contain BN, the number of blocks, BN = L,
C                     for the parameters corresponding to the nonlinear
C                     part.  BN >= 0.
C             IPAR(3) must contain BSM, the number of rows of the blocks
C                     J_k = dy(k)/dwb(k), k = 1:BN, if BN > 0, or the
C                     number of rows of the matrix J, if BN <= 1.
C             IPAR(4) must contain BSN, the number of columns of the
C                     blocks J_k, k = 1:BN.  BSN >= 0.
C
C     LIPAR   (input) INTEGER
C             The length of the array IPAR.  LIPAR >= 4.
C
C     DPAR    (input) DOUBLE PRECISION array, dimension (LDPAR)
C             The real parameters needed for solving the problem.
C             The entry DPAR(1) must contain the real scalar c.
C
C     LDPAR   (input) INTEGER
C             The length of the array DPAR.  LDPAR >= 1.
C
C     J       (input) DOUBLE PRECISION array, dimension (LDJ, NC)
C             where NC = N if BN <= 1, and NC = BSN+ST, if BN > 1.
C             The leading NR-by-NC part of this array must contain
C             the (compressed) representation (Jc) of the Jacobian
C             matrix J, where NR = BSM if BN <= 1, and NR = BN*BSM,
C             if BN > 1.
C
C     LDJ     (input) INTEGER
C             The leading dimension of array J.  LDJ >= MAX(1,NR).
C
C     X       (input/output) DOUBLE PRECISION array, dimension
C             (1+(N-1)*INCX)
C             On entry, this incremented array must contain the
C             vector x.
C             On exit, this incremented array contains the value of the
C             matrix-vector product (J'*J + c*I)*x.
C
C     INCX    (input) INTEGER
C             The increment for the elements of X.  INCX >= 1.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C
C     LDWORK  INTEGER
C             The length of the array DWORK.  LDWORK >= NR.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value.
C
C     METHOD
C
C     The associativity of matrix multiplications is used; the result
C     is obtained as:  x_out = J'*( J*x ) + c*x.
C
C     CONTRIBUTORS
C
C     A. Riedel, R. Schneider, Chemnitz University of Technology,
C     Mar. 2001, during a stay at University of Twente, NL.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Apr. 2001,
C     Mar. 2002.
C
C     KEYWORDS
C
C     Elementary matrix operations, matrix algebra, matrix operations,
C     Wiener system.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ZERO, ONE
      PARAMETER         ( ZERO = 0.0D0, ONE = 1.0D0 )
C     .. Scalar Arguments ..
      INTEGER           INCX, INFO, LDJ, LDPAR, LDWORK, LIPAR, N
C     .. Array Arguments ..
      DOUBLE PRECISION  DPAR(*), DWORK(*), J(LDJ,*), X(*)
      INTEGER           IPAR(*)
C     .. Local Scalars ..
      INTEGER           BN, BSM, BSN, IBSM, IBSN, IX, JL, M, NTHS, ST,
     $                  XL
      DOUBLE PRECISION  C
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMV, DSCAL, XERBLA
C     .. Intrinsic Functions ..
      INTRINSIC         MAX, MIN
C     ..
C     .. Executable Statements ..
C
      INFO = 0
C
      IF ( N.LT.0 ) THEN
         INFO = -1
      ELSEIF ( LIPAR.LT.4 ) THEN
         INFO = -3
      ELSEIF ( LDPAR.LT.1 ) THEN
         INFO = -5
      ELSEIF ( INCX.LT.1 ) THEN
         INFO = -9
      ELSE
         ST   = IPAR(1)
         BN   = IPAR(2)
         BSM  = IPAR(3)
         BSN  = IPAR(4)
         NTHS = BN*BSN
         IF ( BN.GT.1 ) THEN
            M = BN*BSM
         ELSE
            M = BSM
         END IF
         IF ( MIN( ST, BN, BSM, BSN ).LT.0 ) THEN
            INFO = -2
         ELSEIF ( N.NE.NTHS + ST ) THEN
            INFO = -1
         ELSEIF ( LDJ.LT.MAX( 1, M ) ) THEN
            INFO = -7
         ELSEIF ( LDWORK.LT.M ) THEN
            INFO = -11
         END IF
      END IF
C
C     Return if there are illegal arguments.
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'NF01BW', -INFO )
         RETURN
      ENDIF
C
C     Quick return if possible.
C
      IF ( N.EQ.0 )
     $   RETURN
C
      C = DPAR(1)
C
      IF ( M.EQ.0 ) THEN
C
C        Special case, void Jacobian: x <-- c*x.
C
         CALL DSCAL( N, C, X, INCX )
         RETURN
      END IF
C
      IF ( BN.LE.1 .OR. BSN.EQ.0 ) THEN
C
C        Special case, l <= 1 or BSN = 0: the Jacobian is represented
C        as a full matrix. Adapted code from NF01BX is included in-line.
C
         CALL DGEMV( 'NoTranspose', M, N, ONE, J, LDJ, X, INCX, ZERO,
     $               DWORK, 1 )
         CALL DGEMV( 'Transpose', M, N, ONE, J, LDJ, DWORK, 1, C, X,
     $               INCX )
         RETURN
      END IF
C
C     General case: l > 1, BSN > 0, BSM > 0.
C
      JL = BSN + 1
      IX = BSN*INCX
      XL = BN*IX + 1
C
      IF ( ST.GT.0 ) THEN
         CALL DGEMV( 'NoTranspose', M, ST, ONE, J(1,JL), LDJ, X(XL),
     $               INCX, ZERO, DWORK, 1 )
      ELSE
         DWORK(1) = ZERO
         CALL DCOPY( M, DWORK(1), 0, DWORK, 1 )
      END IF
      IBSN = 1
C
      DO 10 IBSM = 1, M, BSM
         CALL DGEMV( 'NoTranspose', BSM, BSN, ONE, J(IBSM,1), LDJ,
     $               X(IBSN), INCX, ONE, DWORK(IBSM), 1 )
         CALL DGEMV( 'Transpose', BSM, BSN, ONE, J(IBSM,1), LDJ,
     $               DWORK(IBSM), 1, C, X(IBSN), INCX )
         IBSN = IBSN + IX
   10 CONTINUE
C
      IF ( ST.GT.0 )
     $   CALL DGEMV( 'Transpose', M, ST, ONE, J(1,JL), LDJ, DWORK, 1, C,
     $               X(XL), INCX )
C
      RETURN
C
C *** Last line of NF01BW ***
      END