1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
SUBROUTINE NF01BX( N, IPAR, LIPAR, DPAR, LDPAR, J, LDJ, X, INCX,
$ DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute (J'*J + c*I)*x, where J is an m-by-n real matrix, c is
C a real scalar, I is the n-by-n identity matrix, and x is a real
C n-vector.
C
C NOTE: this routine must have the same arguments as SLICOT Library
C routine NF01BW.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The number of columns of the Jacobian matrix J. N >= 0.
C
C IPAR (input) INTEGER array, dimension (LIPAR)
C The integer parameters describing the structure of the
C matrix J, as follows:
C IPAR(1) must contain the number of rows M of the Jacobian
C matrix J. M >= 0.
C IPAR is provided for compatibility with SLICOT Library
C routine MD03AD.
C
C LIPAR (input) INTEGER
C The length of the array IPAR. LIPAR >= 1.
C
C DPAR (input) DOUBLE PRECISION array, dimension (LDPAR)
C The real parameters needed for solving the problem.
C The entry DPAR(1) must contain the real scalar c.
C
C LDPAR (input) INTEGER
C The length of the array DPAR. LDPAR >= 1.
C
C J (input) DOUBLE PRECISION array, dimension (LDJ,N)
C The leading M-by-N part of this array must contain the
C Jacobian matrix J.
C
C LDJ INTEGER
C The leading dimension of the array J. LDJ >= MAX(1,M).
C
C X (input/output) DOUBLE PRECISION array, dimension
C (1+(N-1)*abs(INCX))
C On entry, this incremented array must contain the
C vector x.
C On exit, this incremented array contains the value of the
C matrix-vector product (J'*J + c*I)*x.
C
C INCX (input) INTEGER
C The increment for the elements of X. INCX <> 0.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C
C LDWORK INTEGER
C The length of the array DWORK. LDWORK >= M.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The associativity of matrix multiplications is used; the result
C is obtained as: x_out = J'*( J*x ) + c*x.
C
C CONTRIBUTORS
C
C A. Riedel, R. Schneider, Chemnitz University of Technology,
C Oct. 2000, during a stay at University of Twente, NL.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001,
C Mar. 2002, Oct. 2004.
C
C KEYWORDS
C
C Elementary matrix operations, matrix algebra, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
INTEGER INCX, INFO, LDJ, LDPAR, LDWORK, LIPAR, N
C .. Array Arguments ..
INTEGER IPAR(*)
DOUBLE PRECISION DPAR(*), DWORK(*), J(LDJ,*), X(*)
C .. Local Scalars ..
INTEGER M
DOUBLE PRECISION C
C .. External Subroutines ..
EXTERNAL DGEMV, DSCAL, XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C ..
C .. Executable Statements ..
C
INFO = 0
IF ( N.LT.0 ) THEN
INFO = -1
ELSEIF ( LIPAR.LT.1 ) THEN
INFO = -3
ELSEIF ( LDPAR.LT.1 ) THEN
INFO = -5
ELSEIF ( INCX.EQ.0 ) THEN
INFO = -9
ELSE
M = IPAR(1)
IF ( M.LT.0 ) THEN
INFO = -2
ELSEIF ( LDJ.LT.MAX( 1, M ) ) THEN
INFO = -7
ELSEIF ( LDWORK.LT.M ) THEN
INFO = -11
ENDIF
ENDIF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'NF01BX', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( N.EQ.0 )
$ RETURN
C
C = DPAR(1)
IF ( M.EQ.0 ) THEN
C
C Special case, void J: x <-- c*x.
C
CALL DSCAL( N, C, X, INCX )
RETURN
END IF
C
CALL DGEMV( 'NoTranspose', M, N, ONE, J, LDJ, X, INCX, ZERO,
$ DWORK, 1 )
CALL DGEMV( 'Transpose', M, N, ONE, J, LDJ, DWORK, 1, C, X, INCX )
RETURN
C
C *** Last line of NF01BX ***
END
|