1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
SUBROUTINE NF01BY( CJTE, NSMP, NZ, L, IPAR, LIPAR, WB, LWB, Z,
$ LDZ, E, J, LDJ, JTE, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute the Jacobian of the error function for a neural network
C of the structure
C
C - tanh(w1*z+b1) -
C / : \
C z --- : --- sum(ws(i)*...)+ b(n+1) --- y,
C \ : /
C - tanh(wn*z+bn) -
C
C for the single-output case. The Jacobian has the form
C
C d e(1) / d WB(1) ... d e(1) / d WB(NWB)
C J = : : ,
C d e(NSMP) / d WB(1) ... d e(NSMP) / d WB(NWB)
C
C where e(z) is the error function, WB is the set of weights and
C biases of the network (for the considered output), and NWB is
C the number of elements of this set, NWB = IPAR(1)*(NZ+2)+1
C (see below).
C
C In the multi-output case, this routine should be called for each
C output.
C
C NOTE: this routine must have the same arguments as SLICOT Library
C routine NF01BD.
C
C ARGUMENTS
C
C Mode Parameters
C
C CJTE CHARACTER*1
C Specifies whether the matrix-vector product J'*e should be
C computed or not, as follows:
C = 'C' : compute J'*e;
C = 'N' : do not compute J'*e.
C
C Input/Output Parameters
C
C NSMP (input) INTEGER
C The number of training samples. NSMP >= 0.
C
C NZ (input) INTEGER
C The length of each input sample. NZ >= 0.
C
C L (input) INTEGER
C The length of each output sample.
C Currently, L must be 1.
C
C IPAR (input/output) INTEGER array, dimension (LIPAR)
C The integer parameters needed.
C On entry, the first element of this array must contain
C a value related to the number of neurons, n; specifically,
C n = abs(IPAR(1)), since setting IPAR(1) < 0 has a special
C meaning (see below).
C On exit, if IPAR(1) < 0 on entry, then no computations are
C performed, except the needed tests on input parameters,
C but the following values are returned:
C IPAR(1) contains the length of the array J, LJ;
C LDJ contains the leading dimension of array J.
C Otherwise, IPAR(1) and LDJ are unchanged on exit.
C
C LIPAR (input) INTEGER
C The length of the vector IPAR. LIPAR >= 1.
C
C WB (input) DOUBLE PRECISION array, dimension (LWB)
C The leading NWB = IPAR(1)*(NZ+2)+1 part of this array
C must contain the weights and biases of the network,
C WB = ( w(1,1), ..., w(1,NZ), ..., w(n,1), ..., w(n,NZ),
C ws(1), ..., ws(n), b(1), ..., b(n+1) ),
C where w(i,j) are the weights of the hidden layer,
C ws(i) are the weights of the linear output layer and
C b(i) are the biases.
C
C LWB (input) INTEGER
C The length of array WB. LWB >= NWB.
C
C Z (input) DOUBLE PRECISION array, dimension (LDZ, NZ)
C The leading NSMP-by-NZ part of this array must contain the
C set of input samples,
C Z = ( Z(1,1),...,Z(1,NZ); ...; Z(NSMP,1),...,Z(NSMP,NZ) ).
C
C LDZ INTEGER
C The leading dimension of array Z. LDZ >= MAX(1,NSMP).
C
C E (input) DOUBLE PRECISION array, dimension (NSMP)
C If CJTE = 'C', this array must contain the error vector e.
C If CJTE = 'N', this array is not referenced.
C
C J (output) DOUBLE PRECISION array, dimension (LDJ, NWB)
C The leading NSMP-by-NWB part of this array contains the
C Jacobian of the error function.
C
C LDJ INTEGER
C The leading dimension of array J. LDJ >= MAX(1,NSMP).
C Note that LDJ is an input parameter, except for
C IPAR(1) < 0 on entry, when it is an output parameter.
C
C JTE (output) DOUBLE PRECISION array, dimension (NWB)
C If CJTE = 'C', this array contains the matrix-vector
C product J'*e.
C If CJTE = 'N', this array is not referenced.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C This argument is included for combatibility with SLICOT
C Library routine NF01BD.
C
C LDWORK INTEGER
C Normally, the length of the array DWORK. LDWORK >= 0.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value.
C
C METHOD
C
C The Jacobian is computed analytically.
C
C CONTRIBUTORS
C
C A. Riedel, R. Schneider, Chemnitz University of Technology,
C Oct. 2000, during a stay at University of Twente, NL.
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2001.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Input output description, neural network, nonlinear system,
C optimization, system response.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
C .. Scalar Arguments ..
CHARACTER CJTE
INTEGER INFO, L, LDJ, LDWORK, LDZ, LIPAR, LWB, NSMP, NZ
C .. Array Arguments ..
DOUBLE PRECISION DWORK(*), E(*), J(LDJ,*), JTE(*), WB(*),
$ Z(LDZ,*)
INTEGER IPAR(*)
C .. Local Scalars ..
LOGICAL WJTE
INTEGER BP1, DI, I, IB, K, M, NN, NWB, WS
DOUBLE PRECISION BIGNUM, SMLNUM, TMP
C .. External Functions ..
DOUBLE PRECISION DLAMCH
LOGICAL LSAME
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DGEMV, DLABAD, XERBLA
C .. Intrinsic Functions ..
INTRINSIC ABS, EXP, LOG, MAX, MIN
C ..
C .. Executable Statements ..
C
WJTE = LSAME( CJTE, 'C' )
INFO = 0
NN = IPAR(1)
NWB = NN*( NZ + 2 ) + 1
IF( .NOT.( WJTE .OR. LSAME( CJTE, 'N' ) ) ) THEN
INFO = -1
ELSEIF ( NSMP.LT.0 ) THEN
INFO = -2
ELSEIF ( NZ.LT.0 ) THEN
INFO = -3
ELSEIF ( L.NE.1 ) THEN
INFO = -4
ELSEIF ( LIPAR.LT.1 ) THEN
INFO = -6
ELSEIF ( IPAR(1).LT.0 ) THEN
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'NF01BY', -INFO )
ELSE
IPAR(1) = NSMP*( ABS( NN )*( NZ + 2 ) + 1 )
LDJ = NSMP
ENDIF
RETURN
ELSEIF ( LWB.LT.NWB ) THEN
INFO = -8
ELSEIF ( LDZ.LT.MAX( 1, NSMP ) ) THEN
INFO = -10
ELSEIF ( LDJ.LT.MAX( 1, NSMP ) ) THEN
INFO = -13
ENDIF
C
C Return if there are illegal arguments.
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'NF01BY', -INFO )
RETURN
ENDIF
C
C Quick return if possible.
C
IF ( MIN( NSMP, NZ ).EQ.0 )
$ RETURN
C
C Set parameters to avoid overflows and increase accuracy for
C extreme values.
C
SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = LOG( SMLNUM )
BIGNUM = LOG( BIGNUM )
C
WS = NZ*NN + 1
IB = WS + NN
BP1 = IB + NN
C
J(1, BP1) = ONE
CALL DCOPY( NSMP, J(1, BP1), 0, J(1, BP1), 1 )
C
DO 10 I = 0, NN - 1
CALL DCOPY( NSMP, WB(IB+I), 0, J(1, WS+I), 1 )
10 CONTINUE
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', NSMP, NN, NZ, -TWO, Z,
$ LDZ, WB, NZ, -TWO, J(1, WS), LDJ )
DI = 1
C
DO 50 I = 0, NN - 1
C
DO 20 K = 1, NSMP
TMP = J(K, WS+I)
IF ( ABS( TMP ).GE.BIGNUM ) THEN
IF ( TMP.GT.ZERO ) THEN
J(K, WS+I) = -ONE
ELSE
J(K, WS+I) = ONE
END IF
ELSE IF ( ABS( TMP ).LE.SMLNUM ) THEN
J(K, WS+I) = ZERO
ELSE
J(K, WS+I) = TWO/( ONE + EXP( TMP ) ) - ONE
END IF
J(K, IB+I) = WB(WS+I)*( ONE - J(K, WS+I)**2 )
20 CONTINUE
C
DO 40 K = 0, NZ - 1
C
DO 30 M = 1, NSMP
J(M, DI+K) = J(M, IB+I)*Z(M, K+1)
30 CONTINUE
C
40 CONTINUE
C
DI = DI + NZ
50 CONTINUE
C
IF ( WJTE ) THEN
C
C Compute J'e.
C
CALL DGEMV( 'Transpose', NSMP, NWB, ONE, J, LDJ, E, 1, ZERO,
$ JTE, 1 )
END IF
C
RETURN
C
C *** Last line of NF01BY ***
END
|