1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
|
SUBROUTINE SB01BD( DICO, N, M, NP, ALPHA, A, LDA, B, LDB, WR, WI,
$ NFP, NAP, NUP, F, LDF, Z, LDZ, TOL, DWORK,
$ LDWORK, IWARN, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To determine the state feedback matrix F for a given system (A,B)
C such that the closed-loop state matrix A+B*F has specified
C eigenvalues.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of the original system as follows:
C = 'C': continuous-time system;
C = 'D': discrete-time system.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The dimension of the state vector, i.e. the order of the
C matrix A, and also the number of rows of the matrix B and
C the number of columns of the matrix F. N >= 0.
C
C M (input) INTEGER
C The dimension of input vector, i.e. the number of columns
C of the matrix B and the number of rows of the matrix F.
C M >= 0.
C
C NP (input) INTEGER
C The number of given eigenvalues. At most N eigenvalues
C can be assigned. 0 <= NP.
C
C ALPHA (input) DOUBLE PRECISION
C Specifies the maximum admissible value, either for real
C parts, if DICO = 'C', or for moduli, if DICO = 'D',
C of the eigenvalues of A which will not be modified by
C the eigenvalue assignment algorithm.
C ALPHA >= 0 if DICO = 'D'.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the state dynamics matrix A.
C On exit, the leading N-by-N part of this array contains
C the matrix Z'*(A+B*F)*Z in a real Schur form.
C The leading NFP-by-NFP diagonal block of A corresponds
C to the fixed (unmodified) eigenvalues having real parts
C less than ALPHA, if DICO = 'C', or moduli less than ALPHA,
C if DICO = 'D'. The trailing NUP-by-NUP diagonal block of A
C corresponds to the uncontrollable eigenvalues detected by
C the eigenvalue assignment algorithm. The elements under
C the first subdiagonal are set to zero.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C input/state matrix.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C WR,WI (input/output) DOUBLE PRECISION array, dimension (NP)
C On entry, these arrays must contain the real and imaginary
C parts, respectively, of the desired eigenvalues of the
C closed-loop system state-matrix A+B*F. The eigenvalues
C can be unordered, except that complex conjugate pairs
C must appear consecutively in these arrays.
C On exit, if INFO = 0, the leading NAP elements of these
C arrays contain the real and imaginary parts, respectively,
C of the assigned eigenvalues. The trailing NP-NAP elements
C contain the unassigned eigenvalues.
C
C NFP (output) INTEGER
C The number of eigenvalues of A having real parts less than
C ALPHA, if DICO = 'C', or moduli less than ALPHA, if
C DICO = 'D'. These eigenvalues are not modified by the
C eigenvalue assignment algorithm.
C
C NAP (output) INTEGER
C The number of assigned eigenvalues. If INFO = 0 on exit,
C then NAP = N-NFP-NUP.
C
C NUP (output) INTEGER
C The number of uncontrollable eigenvalues detected by the
C eigenvalue assignment algorithm (see METHOD).
C
C F (output) DOUBLE PRECISION array, dimension (LDF,N)
C The leading M-by-N part of this array contains the state
C feedback F, which assigns NAP closed-loop eigenvalues and
C keeps unaltered N-NAP open-loop eigenvalues.
C
C LDF INTEGER
C The leading dimension of array F. LDF >= MAX(1,M).
C
C Z (output) DOUBLE PRECISION array, dimension (LDZ,N)
C The leading N-by-N part of this array contains the
C orthogonal matrix Z which reduces the closed-loop
C system state matrix A + B*F to upper real Schur form.
C
C LDZ INTEGER
C The leading dimension of array Z. LDZ >= MAX(1,N).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The absolute tolerance level below which the elements of A
C or B are considered zero (used for controllability tests).
C If the user sets TOL <= 0, then the default tolerance
C TOL = N * EPS * max(NORM(A),NORM(B)) is used, where EPS is
C the machine precision (see LAPACK Library routine DLAMCH)
C and NORM(A) denotes the 1-norm of A.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The dimension of working array DWORK.
C LDWORK >= MAX( 1,5*M,5*N,2*N+4*M ).
C For optimum performance LDWORK should be larger.
C
C Warning Indicator
C
C IWARN INTEGER
C = 0: no warning;
C = K: K violations of the numerical stability condition
C NORM(F) <= 100*NORM(A)/NORM(B) occured during the
C assignment of eigenvalues.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: the reduction of A to a real Schur form failed;
C = 2: a failure was detected during the ordering of the
C real Schur form of A, or in the iterative process
C for reordering the eigenvalues of Z'*(A + B*F)*Z
C along the diagonal.
C = 3: the number of eigenvalues to be assigned is less
C than the number of possibly assignable eigenvalues;
C NAP eigenvalues have been properly assigned,
C but some assignable eigenvalues remain unmodified.
C = 4: an attempt is made to place a complex conjugate
C pair on the location of a real eigenvalue. This
C situation can only appear when N-NFP is odd,
C NP > N-NFP-NUP is even, and for the last real
C eigenvalue to be modified there exists no available
C real eigenvalue to be assigned. However, NAP
C eigenvalues have been already properly assigned.
C
C METHOD
C
C SB01BD is based on the factorization algorithm of [1].
C Given the matrices A and B of dimensions N-by-N and N-by-M,
C respectively, this subroutine constructs an M-by-N matrix F such
C that A + BF has eigenvalues as follows.
C Let NFP eigenvalues of A have real parts less than ALPHA, if
C DICO = 'C', or moduli less then ALPHA, if DICO = 'D'. Then:
C 1) If the pair (A,B) is controllable, then A + B*F has
C NAP = MIN(NP,N-NFP) eigenvalues assigned from those specified
C by WR + j*WI and N-NAP unmodified eigenvalues;
C 2) If the pair (A,B) is uncontrollable, then the number of
C assigned eigenvalues NAP satifies generally the condition
C NAP <= MIN(NP,N-NFP).
C
C At the beginning of the algorithm, F = 0 and the matrix A is
C reduced to an ordered real Schur form by separating its spectrum
C in two parts. The leading NFP-by-NFP part of the Schur form of
C A corresponds to the eigenvalues which will not be modified.
C These eigenvalues have real parts less than ALPHA, if
C DICO = 'C', or moduli less than ALPHA, if DICO = 'D'.
C The performed orthogonal transformations are accumulated in Z.
C After this preliminary reduction, the algorithm proceeds
C recursively.
C
C Let F be the feedback matrix at the beginning of a typical step i.
C At each step of the algorithm one real eigenvalue or two complex
C conjugate eigenvalues are placed by a feedback Fi of rank 1 or
C rank 2, respectively. Since the feedback Fi affects only the
C last 1 or 2 columns of Z'*(A+B*F)*Z, the matrix Z'*(A+B*F+B*Fi)*Z
C therefore remains in real Schur form. The assigned eigenvalue(s)
C is (are) then moved to another diagonal position of the real
C Schur form using reordering techniques and a new block is
C transfered in the last diagonal position. The feedback matrix F
C is updated as F <-- F + Fi. The eigenvalue(s) to be assigned at
C each step is (are) chosen such that the norm of each Fi is
C minimized.
C
C If uncontrollable eigenvalues are encountered in the last diagonal
C position of the real Schur matrix Z'*(A+B*F)*Z, the algorithm
C deflates them at the bottom of the real Schur form and redefines
C accordingly the position of the "last" block.
C
C Note: Not all uncontrollable eigenvalues of the pair (A,B) are
C necessarily detected by the eigenvalue assignment algorithm.
C Undetected uncontrollable eigenvalues may exist if NFP > 0 and/or
C NP < N-NFP.
C
C REFERENCES
C
C [1] Varga A.
C A Schur method for pole assignment.
C IEEE Trans. Autom. Control, Vol. AC-26, pp. 517-519, 1981.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires no more than 14N floating point
C operations. Although no proof of numerical stability is known,
C the algorithm has always been observed to yield reliable
C numerical results.
C
C CONTRIBUTOR
C
C A. Varga, German Aerospace Center, DLR Oberpfaffenhofen.
C February 1999. Based on the RASP routine SB01BD.
C
C REVISIONS
C
C March 30, 1999, V. Sima, Research Institute for Informatics,
C Bucharest.
C April 4, 1999. A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen.
C May 18, 2003. A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen.
C Feb. 15, 2004, V. Sima, Research Institute for Informatics,
C Bucharest.
C May 12, 2005. A. Varga, German Aerospace Center,
C DLR Oberpfaffenhofen.
C
C KEYWORDS
C
C Eigenvalues, eigenvalue assignment, feedback control,
C pole placement, state-space model.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION HUNDR, ONE, TWO, ZERO
PARAMETER ( HUNDR = 1.0D2, ONE = 1.0D0, TWO = 2.0D0,
$ ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO
INTEGER INFO, IWARN, LDA, LDB, LDF, LDWORK, LDZ, M, N,
$ NAP, NFP, NP, NUP
DOUBLE PRECISION ALPHA, TOL
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), F(LDF,*),
$ WI(*), WR(*), Z(LDZ,*)
C .. Local Scalars ..
LOGICAL CEIG, DISCR, SIMPLB
INTEGER I, IB, IB1, IERR, IPC, J, K, KFI, KG, KW, KWI,
$ KWR, NCUR, NCUR1, NL, NLOW, NMOVES, NPC, NPR,
$ NSUP, WRKOPT
DOUBLE PRECISION ANORM, BNORM, C, P, RMAX, S, X, Y, TOLER, TOLERB
C .. Local Arrays ..
LOGICAL BWORK(1)
DOUBLE PRECISION A2(2,2)
C .. External Functions ..
LOGICAL LSAME, SELECT
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE, LSAME, SELECT
C .. External Subroutines ..
EXTERNAL DGEES, DGEMM, DLAEXC, DLASET, DROT, DSWAP,
$ MB03QD, MB03QY, SB01BX, SB01BY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX
C ..
C .. Executable Statements ..
C
DISCR = LSAME( DICO, 'D' )
IWARN = 0
INFO = 0
C
C Check the scalar input parameters.
C
IF( .NOT. ( LSAME( DICO, 'C' ) .OR. DISCR ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( NP.LT.0 ) THEN
INFO = -4
ELSE IF( DISCR .AND. ( ALPHA.LT.ZERO ) ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -16
ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDWORK.LT.MAX( 1, 5*M, 5*N, 2*N + 4*M ) ) THEN
INFO = -21
END IF
IF( INFO.NE.0 )THEN
C
C Error return.
C
CALL XERBLA( 'SB01BD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
NFP = 0
NAP = 0
NUP = 0
DWORK(1) = ONE
RETURN
END IF
C
C Compute the norms of A and B, and set default tolerances
C if necessary.
C
ANORM = DLANGE( '1-norm', N, N, A, LDA, DWORK )
BNORM = DLANGE( '1-norm', N, M, B, LDB, DWORK )
IF( TOL.LE.ZERO ) THEN
X = DLAMCH( 'Epsilon' )
TOLER = DBLE( N ) * MAX( ANORM, BNORM ) * X
TOLERB = DBLE( N ) * BNORM * X
ELSE
TOLER = TOL
TOLERB = TOL
END IF
C
C Allocate working storage.
C
KWR = 1
KWI = KWR + N
KW = KWI + N
C
C Reduce A to real Schur form using an orthogonal similarity
C transformation A <- Z'*A*Z and accumulate the transformation in Z.
C
C Workspace: need 5*N;
C prefer larger.
C
CALL DGEES( 'Vectors', 'No ordering', SELECT, N, A, LDA, NCUR,
$ DWORK(KWR), DWORK(KWI), Z, LDZ, DWORK(KW),
$ LDWORK-KW+1, BWORK, INFO )
WRKOPT = KW - 1 + INT( DWORK( KW ) )
IF( INFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
C
C Reduce A to an ordered real Schur form using an orthogonal
C similarity transformation A <- Z'*A*Z and accumulate the
C transformations in Z. The separation of the spectrum of A is
C performed such that the leading NFP-by-NFP submatrix of A
C corresponds to the "good" eigenvalues which will not be
C modified. The bottom (N-NFP)-by-(N-NFP) diagonal block of A
C corresponds to the "bad" eigenvalues to be modified.
C
C Workspace needed: N.
C
CALL MB03QD( DICO, 'Stable', 'Update', N, 1, N, ALPHA,
$ A, LDA, Z, LDZ, NFP, DWORK, INFO )
IF( INFO.NE.0 )
$ RETURN
C
C Set F = 0.
C
CALL DLASET( 'Full', M, N, ZERO, ZERO, F, LDF )
C
C Return if B is negligible (uncontrollable system).
C
IF( BNORM.LE.TOLERB ) THEN
NAP = 0
NUP = N
DWORK(1) = WRKOPT
RETURN
END IF
C
C Compute the bound for the numerical stability condition.
C
RMAX = HUNDR * ANORM / BNORM
C
C Perform eigenvalue assignment if there exist "bad" eigenvalues.
C
NAP = 0
NUP = 0
IF( NFP .LT. N ) THEN
KG = 1
KFI = KG + 2*M
KW = KFI + 2*M
C
C Set the limits for the bottom diagonal block.
C
NLOW = NFP + 1
NSUP = N
C
C Separate and count real and complex eigenvalues to be assigned.
C
NPR = 0
DO 10 I = 1, NP
IF( WI(I) .EQ. ZERO ) THEN
NPR = NPR + 1
K = I - NPR
IF( K .GT. 0 ) THEN
S = WR(I)
DO 5 J = NPR + K - 1, NPR, -1
WR(J+1) = WR(J)
WI(J+1) = WI(J)
5 CONTINUE
WR(NPR) = S
WI(NPR) = ZERO
END IF
END IF
10 CONTINUE
NPC = NP - NPR
C
C The first NPR elements of WR and WI contain the real
C eigenvalues, the last NPC elements contain the complex
C eigenvalues. Set the pointer to complex eigenvalues.
C
IPC = NPR + 1
C
C Main loop for assigning one or two eigenvalues.
C
C Terminate if all eigenvalues were assigned, or if there
C are no more eigenvalues to be assigned, or if a non-fatal
C error condition was set.
C
C WHILE (NLOW <= NSUP and INFO = 0) DO
C
20 IF( NLOW.LE.NSUP .AND. INFO.EQ.0 ) THEN
C
C Determine the dimension of the last block.
C
IB = 1
IF( NLOW.LT.NSUP ) THEN
IF( A(NSUP,NSUP-1).NE.ZERO ) IB = 2
END IF
C
C Compute G, the current last IB rows of Z'*B.
C
NL = NSUP - IB + 1
CALL DGEMM( 'Transpose', 'NoTranspose', IB, M, N, ONE,
$ Z(1,NL), LDZ, B, LDB, ZERO, DWORK(KG), IB )
C
C Check the controllability for a simple block.
C
IF( DLANGE( '1', IB, M, DWORK(KG), IB, DWORK(KW) )
$ .LE. TOLERB ) THEN
C
C Deflate the uncontrollable block and resume the
C main loop.
C
NSUP = NSUP - IB
NUP = NUP + IB
GO TO 20
END IF
C
C Test for termination with INFO = 3.
C
IF( NAP.EQ.NP) THEN
INFO = 3
C
C Test for compatibility. Terminate if an attempt occurs
C to place a complex conjugate pair on a 1x1 block.
C
ELSE IF( IB.EQ.1 .AND. NPR.EQ.0 .AND. NLOW.EQ.NSUP ) THEN
INFO = 4
ELSE
C
C Set the simple block flag.
C
SIMPLB = .TRUE.
C
C Form a 2-by-2 block if necessary from two 1-by-1 blocks.
C Consider special case IB = 1, NPR = 1 and
C NPR+NPC > NSUP-NLOW+1 to avoid incompatibility.
C
IF( ( IB.EQ.1 .AND. NPR.EQ.0 ) .OR.
$ ( IB.EQ.1 .AND. NPR.EQ.1 .AND. NSUP.GT.NLOW .AND.
$ NPR+NPC.GT.NSUP-NLOW+1 ) ) THEN
IF( NSUP.GT.2 ) THEN
IF( A(NSUP-1,NSUP-2) .NE. ZERO ) THEN
C
C Interchange with the adjacent 2x2 block.
C
C Workspace needed: N.
C
CALL DLAEXC( .TRUE., N, A, LDA, Z, LDZ, NSUP-2,
$ 2, 1, DWORK(KW), INFO )
IF( INFO .NE. 0 ) THEN
INFO = 2
RETURN
END IF
ELSE
C
C Form a non-simple block by extending the last
C block with a 1x1 block.
C
SIMPLB = .FALSE.
END IF
ELSE
SIMPLB = .FALSE.
END IF
IB = 2
END IF
NL = NSUP - IB + 1
C
C Compute G, the current last IB rows of Z'*B.
C
CALL DGEMM( 'Transpose', 'NoTranspose', IB, M, N, ONE,
$ Z(1,NL), LDZ, B, LDB, ZERO, DWORK(KG), IB )
C
C Check the controllability for the current block.
C
IF( DLANGE( '1', IB, M, DWORK(KG), IB, DWORK(KW) )
$ .LE. TOLERB ) THEN
C
C Deflate the uncontrollable block and resume the
C main loop.
C
NSUP = NSUP - IB
NUP = NUP + IB
GO TO 20
END IF
C
IF( NAP+IB .GT. NP ) THEN
C
C No sufficient eigenvalues to be assigned.
C
INFO = 3
ELSE
IF( IB .EQ. 1 ) THEN
C
C A 1-by-1 block.
C
C Assign the real eigenvalue nearest to A(NSUP,NSUP).
C
X = A(NSUP,NSUP)
CALL SB01BX( .TRUE., NPR, X, X, WR, X, S, P )
NPR = NPR - 1
CEIG = .FALSE.
ELSE
C
C A 2-by-2 block.
C
IF( SIMPLB ) THEN
C
C Simple 2-by-2 block with complex eigenvalues.
C Compute the eigenvalues of the last block.
C
CALL MB03QY( N, NL, A, LDA, Z, LDZ, X, Y, INFO )
IF( NPC .GT. 1 ) THEN
CALL SB01BX( .FALSE., NPC, X, Y,
$ WR(IPC), WI(IPC), S, P )
NPC = NPC - 2
CEIG = .TRUE.
ELSE
C
C Choose the nearest two real eigenvalues.
C
CALL SB01BX( .TRUE., NPR, X, X, WR, X, S, P )
CALL SB01BX( .TRUE., NPR-1, X, X, WR, X,
$ Y, P )
P = S * Y
S = S + Y
NPR = NPR - 2
CEIG = .FALSE.
END IF
ELSE
C
C Non-simple 2x2 block with real eigenvalues.
C Choose the nearest pair of complex eigenvalues.
C
X = ( A(NL,NL) + A(NSUP,NSUP) )/TWO
CALL SB01BX( .FALSE., NPC, X, ZERO, WR(IPC),
$ WI(IPC), S, P )
NPC = NPC - 2
END IF
END IF
C
C Form the IBxIB matrix A2 from the current diagonal
C block.
C
A2(1,1) = A(NL,NL)
IF( IB .GT. 1 ) THEN
A2(1,2) = A(NL,NSUP)
A2(2,1) = A(NSUP,NL)
A2(2,2) = A(NSUP,NSUP)
END IF
C
C Determine the M-by-IB feedback matrix FI which
C assigns the chosen IB eigenvalues for the pair (A2,G).
C
C Workspace needed: 5*M.
C
CALL SB01BY( IB, M, S, P, A2, DWORK(KG), DWORK(KFI),
$ TOLER, DWORK(KW), IERR )
IF( IERR .NE. 0 ) THEN
IF( IB.EQ.1 .OR. SIMPLB ) THEN
C
C The simple 1x1 block is uncontrollable.
C
NSUP = NSUP - IB
IF( CEIG ) THEN
NPC = NPC + IB
ELSE
NPR = NPR + IB
END IF
NUP = NUP + IB
ELSE
C
C The non-simple 2x2 block is uncontrollable.
C Eliminate its uncontrollable part by using
C the information in elements FI(1,1) and F(1,2).
C
C = DWORK(KFI)
S = DWORK(KFI+IB)
C
C Apply the transformation to A and accumulate it
C in Z.
C
CALL DROT( N-NL+1, A(NL,NL), LDA,
$ A(NSUP,NL), LDA, C, S )
CALL DROT( N, A(1,NL), 1, A(1,NSUP), 1, C, S )
CALL DROT( N, Z(1,NL), 1, Z(1,NSUP), 1, C, S )
C
C Annihilate the subdiagonal element of the last
C block, redefine the upper limit for the bottom
C block and resume the main loop.
C
A(NSUP,NL) = ZERO
NSUP = NL
NUP = NUP + 1
NPC = NPC + 2
END IF
ELSE
C
C Successful assignment of IB eigenvalues.
C
C Update the feedback matrix F <-- F + [0 FI]*Z'.
C
CALL DGEMM( 'NoTranspose', 'Transpose', M, N,
$ IB, ONE, DWORK(KFI), M, Z(1,NL),
$ LDZ, ONE, F, LDF )
C
C Check for possible numerical instability.
C
IF( DLANGE( '1', M, IB, DWORK(KFI), M, DWORK(KW) )
$ .GT. RMAX ) IWARN = IWARN + 1
C
C Update the state matrix A <-- A + Z'*B*[0 FI].
C Workspace needed: 2*N+4*M.
C
CALL DGEMM( 'NoTranspose', 'NoTranspose', N, IB,
$ M, ONE, B, LDB, DWORK(KFI), M, ZERO,
$ DWORK(KW), N )
CALL DGEMM( 'Transpose', 'NoTranspose', NSUP,
$ IB, N, ONE, Z, LDZ, DWORK(KW), N,
$ ONE, A(1,NL), LDA )
C
C Try to split the 2x2 block.
C
IF( IB .EQ. 2 )
$ CALL MB03QY( N, NL, A, LDA, Z, LDZ, X, Y,
$ INFO )
NAP = NAP + IB
IF( NLOW+IB.LE.NSUP ) THEN
C
C Move the last block(s) to the leading
C position(s) of the bottom block.
C
NCUR1 = NSUP - IB
NMOVES = 1
IF( IB.EQ.2 .AND. A(NSUP,NSUP-1).EQ.ZERO ) THEN
IB = 1
NMOVES = 2
END IF
C
C WHILE (NMOVES > 0) DO
30 IF( NMOVES .GT. 0 ) THEN
NCUR = NCUR1
C
C WHILE (NCUR >= NLOW) DO
40 IF( NCUR .GE. NLOW ) THEN
C
C Loop for the last block positioning.
C
IB1 = 1
IF( NCUR.GT.NLOW ) THEN
IF( A(NCUR,NCUR-1).NE.ZERO ) IB1 = 2
END IF
CALL DLAEXC( .TRUE., N, A, LDA, Z, LDZ,
$ NCUR-IB1+1, IB1, IB,
$ DWORK(KW), INFO )
IF( INFO .NE. 0 ) THEN
INFO = 2
RETURN
END IF
NCUR = NCUR - IB1
GO TO 40
END IF
C
C END WHILE 40
C
NMOVES = NMOVES - 1
NCUR1 = NCUR1 + 1
NLOW = NLOW + IB
GO TO 30
END IF
C
C END WHILE 30
C
ELSE
NLOW = NLOW + IB
END IF
END IF
END IF
END IF
IF( INFO.EQ.0 ) GO TO 20
C
C END WHILE 20
C
END IF
C
WRKOPT = MAX( WRKOPT, 5*M, 2*N + 4*M )
END IF
C
C Annihilate the elements below the first subdiagonal of A.
C
IF( N .GT. 2)
$ CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, A(3,1), LDA )
IF( NAP .GT. 0 ) THEN
C
C Move the assigned eigenvalues in the first NAP positions of
C WR and WI.
C
K = IPC - NPR - 1
IF( K .GT. 0 ) CALL DSWAP( K, WR(NPR+1), 1, WR, 1 )
J = NAP - K
IF( J .GT. 0 ) THEN
CALL DSWAP( J, WR(IPC+NPC), 1, WR(K+1), 1 )
CALL DSWAP( J, WI(IPC+NPC), 1, WI(K+1), 1 )
END IF
END IF
C
DWORK(1) = WRKOPT
C
RETURN
C *** Last line of SB01BD ***
END
|