1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
|
SUBROUTINE SB01DD( N, M, INDCON, A, LDA, B, LDB, NBLK, WR, WI,
$ Z, LDZ, Y, COUNT, G, LDG, TOL, IWORK, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To compute for a controllable matrix pair ( A, B ) a matrix G
C such that the matrix A - B*G has the desired eigenstructure,
C specified by desired eigenvalues and free eigenvector elements.
C
C The pair ( A, B ) should be given in orthogonal canonical form
C as returned by the SLICOT Library routine AB01ND.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A and the number of rows of the
C matrix B. N >= 0.
C
C M (input) INTEGER
C The number of columns of the matrix B. M >= 0.
C
C INDCON (input) INTEGER
C The controllability index of the pair ( A, B ).
C 0 <= INDCON <= N.
C
C A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C On entry, the leading N-by-N part of this array must
C contain the N-by-N matrix A in orthogonal canonical form,
C as returned by SLICOT Library routine AB01ND.
C On exit, the leading N-by-N part of this array contains
C the real Schur form of the matrix A - B*G.
C The elements below the real Schur form of A are set to
C zero.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C On entry, the leading N-by-M part of this array must
C contain the N-by-M matrix B in orthogonal canonical form,
C as returned by SLICOT Library routine AB01ND.
C On exit, the leading N-by-M part of this array contains
C the transformed matrix B.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C NBLK (input) INTEGER array, dimension (N)
C The leading INDCON elements of this array must contain the
C orders of the diagonal blocks in the orthogonal canonical
C form of A, as returned by SLICOT Library routine AB01ND.
C The values of these elements must satisfy the following
C conditions:
C NBLK(1) >= NBLK(2) >= ... >= NBLK(INDCON),
C NBLK(1) + NBLK(2) + ... + NBLK(INDCON) = N.
C
C WR (input) DOUBLE PRECISION array, dimension (N)
C WI (input) DOUBLE PRECISION array, dimension (N)
C These arrays must contain the real and imaginary parts,
C respectively, of the desired poles of the closed-loop
C system, i.e., the eigenvalues of A - B*G. The poles can be
C unordered, except that complex conjugate pairs of poles
C must appear consecutively.
C The elements of WI for complex eigenvalues are modified
C internally, but restored on exit.
C
C Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C On entry, the leading N-by-N part of this array must
C contain the orthogonal matrix Z generated by SLICOT
C Library routine AB01ND in the reduction of ( A, B ) to
C orthogonal canonical form.
C On exit, the leading N-by-N part of this array contains
C the orthogonal transformation matrix which reduces A - B*G
C to real Schur form.
C
C LDZ INTEGER
C The leading dimension of the array Z. LDZ >= max(1,N).
C
C Y (input) DOUBLE PRECISION array, dimension (M*N)
C Y contains elements which are used as free parameters
C in the eigenstructure design. The values of these
C parameters are often set by an external optimization
C procedure.
C
C COUNT (output) INTEGER
C The actual number of elements in Y used as free
C eigenvector and feedback matrix elements in the
C eigenstructure design.
C
C G (output) DOUBLE PRECISION array, dimension (LDG,N)
C The leading M-by-N part of this array contains the
C feedback matrix which assigns the desired eigenstructure
C of A - B*G.
C
C LDG INTEGER
C The leading dimension of the array G. LDG >= max(1,M).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used in rank determination when
C transforming (A, B). If the user sets TOL > 0, then
C the given value of TOL is used as a lower bound for the
C reciprocal condition number (see the description of the
C argument RCOND in the SLICOT routine MB03OD); a
C (sub)matrix whose estimated condition number is less than
C 1/TOL is considered to be of full rank. If the user sets
C TOL <= 0, then an implicitly computed, default tolerance,
C defined by TOLDEF = N*N*EPS, is used instead, where
C EPS is the machine precision (see LAPACK Library routine
C DLAMCH).
C
C Workspace
C
C IWORK INTEGER array, dimension (M)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(M*N,M*M+2*N+4*M+1).
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the pair ( A, B ) is not controllable or the free
C parameters are not set appropriately.
C
C METHOD
C
C The routine implements the method proposed in [1], [2].
C
C REFERENCES
C
C [1] Petkov, P.Hr., Konstantinov, M.M., Gu, D.W. and
C Postlethwaite, I.
C Optimal pole assignment design of linear multi-input systems.
C Report 96-11, Department of Engineering, Leicester University,
C 1996.
C
C [2] Petkov, P.Hr., Christov, N.D. and Konstantinov, M.M.
C A computational algorithm for pole assignment of linear multi
C input systems. IEEE Trans. Automatic Control, vol. AC-31,
C pp. 1044-1047, 1986.
C
C NUMERICAL ASPECTS
C
C The method implemented is backward stable.
C
C FURTHER COMMENTS
C
C The eigenvalues of the real Schur form matrix As, returned in the
C array A, are very close to the desired eigenvalues WR+WI*i.
C However, the eigenvalues of the closed-loop matrix A - B*G,
C computed by the QR algorithm using the matrices A and B, given on
C entry, may be far from WR+WI*i, although the relative error
C norm( Z'*(A - B*G)*Z - As )/norm( As )
C is close to machine accuracy. This may happen when the eigenvalue
C problem for the matrix A - B*G is ill-conditioned.
C
C CONTRIBUTORS
C
C P.Hr. Petkov, Technical University of Sofia, Oct. 1998.
C V. Sima, Katholieke Universiteit Leuven, Jan. 1999, SLICOT Library
C version.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2005.
C
C KEYWORDS
C
C Closed loop spectrum, closed loop systems, eigenvalue assignment,
C orthogonal canonical form, orthogonal transformation, pole
C placement, Schur form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C
C .. Scalar Arguments ..
INTEGER COUNT, INDCON, INFO, LDA, LDB, LDG, LDWORK,
$ LDZ, M, N
DOUBLE PRECISION TOL
C ..
C .. Array Arguments ..
INTEGER IWORK( * ), NBLK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ),
$ G( LDG, * ), WI( * ), WR( * ), Y( * ),
$ Z( LDZ, * )
C ..
C .. Local Scalars ..
LOGICAL COMPLX
INTEGER I, IA, INDCN1, INDCN2, INDCRT, IP, IRMX, IWRK,
$ K, KK, KMR, L, LP1, M1, MAXWRK, MI, MP1, MR,
$ MR1, NBLKCR, NC, NI, NJ, NP1, NR, NR1, RANK
DOUBLE PRECISION P, Q, R, S, SVLMAX, TOLDEF
C ..
C .. Local Arrays ..
DOUBLE PRECISION SVAL( 3 )
C ..
C .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH, DLANGE, DLAPY2
EXTERNAL DASUM, DLAMCH, DLANGE, DLAPY2
C ..
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMM, DGEMV, DLACPY, DLARF,
$ DLARFG, DLARTG, DLASET, DROT, DSCAL, MB02QD,
$ XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN
C ..
C .. Executable Statements ..
C
C Test the input arguments.
C
INFO = 0
NR = 0
IWRK = MAX( M*N, M*M + 2*N + 4*M + 1 )
DO 10 I = 1, MIN( INDCON, N )
NR = NR + NBLK( I )
IF( I.GT.1 ) THEN
IF( NBLK( I-1 ).LT.NBLK( I ) )
$ INFO = -8
END IF
10 CONTINUE
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( INDCON.LT.0 .OR. INDCON.GT.N ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
ELSE IF( NR.NE.N ) THEN
INFO = -8
ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDG.LT.MAX( 1, M ) ) THEN
INFO = -16
ELSE IF( LDWORK.LT.IWRK ) THEN
INFO = -20
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB01DD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( MIN( M, N, INDCON ).EQ.0 ) THEN
COUNT = 0
DWORK( 1 ) = ONE
RETURN
END IF
C
MAXWRK = IWRK
TOLDEF = TOL
IF ( TOLDEF.LE.ZERO ) THEN
C
C Use the default tolerance, based on machine precision.
C
TOLDEF = DBLE( N*N )*DLAMCH( 'EPSILON' )
END IF
C
IRMX = 2*N + 1
IWRK = IRMX + M*M
M1 = NBLK( 1 )
COUNT = 1
INDCRT = INDCON
NBLKCR = NBLK( INDCRT )
C
C Compute the Frobenius norm of [ B A ] (used for rank estimation),
C taking into account the structure.
C
NR = M1
NC = 1
SVLMAX = DLANGE( 'Frobenius', M1, M, B, LDB, DWORK )
C
DO 20 I = 1, INDCRT - 1
NR = NR + NBLK( I+1 )
SVLMAX = DLAPY2( SVLMAX,
$ DLANGE( 'Frobenius', NR, NBLK( I ),
$ A( 1, NC ), LDA, DWORK ) )
NC = NC + NBLK( I )
20 CONTINUE
C
SVLMAX = DLAPY2( SVLMAX,
$ DLANGE( 'Frobenius', N, NBLKCR, A( 1, NC ), LDA,
$ DWORK ) )
L = 1
MR = NBLKCR
NR = N - MR + 1
30 CONTINUE
C WHILE( INDCRT.GT.1 )LOOP
IF( INDCRT.GT.1 ) THEN
C
C Assign next eigenvalue/eigenvector.
C
LP1 = L + M1
INDCN1 = INDCRT - 1
MR1 = NBLK( INDCN1 )
NR1 = NR - MR1
COMPLX = WI(L).NE.ZERO
CALL DCOPY( MR, Y( COUNT ), 1, DWORK( NR ), 1 )
COUNT = COUNT + MR
NC = 1
IF( COMPLX ) THEN
CALL DCOPY( MR, Y( COUNT ), 1, DWORK( N+NR ), 1 )
COUNT = COUNT + MR
WI( L+1 ) = WI( L )*WI( L+1 )
NC = 2
END IF
C
C Compute and transform eiegenvector.
C
DO 50 IP = 1, INDCRT
IF( IP.NE.INDCRT ) THEN
CALL DLACPY( 'Full', MR, MR1, A( NR, NR1 ), LDA,
$ DWORK( IRMX ), M )
IF( IP.EQ.1 ) THEN
MP1 = MR
NP1 = NR + MP1
ELSE
MP1 = MR + 1
NP1 = NR + MP1
S = DASUM( MP1, DWORK( NR ), 1 )
IF( COMPLX ) S = S + DASUM( MP1, DWORK( N+NR ), 1 )
IF( S.NE.ZERO ) THEN
C
C Scale eigenvector elements.
C
CALL DSCAL( MP1, ONE/S, DWORK( NR ), 1 )
IF( COMPLX ) THEN
CALL DSCAL( MP1, ONE/S, DWORK( N+NR ), 1 )
IF( NP1.LE.N )
$ DWORK( N+NP1 ) = DWORK( N+NP1 ) / S
END IF
END IF
END IF
C
C Compute the right-hand side of the eigenvector equations.
C
CALL DCOPY( MR, DWORK( NR ), 1, DWORK( NR1 ), 1 )
CALL DSCAL( MR, WR( L ), DWORK( NR1 ), 1 )
CALL DGEMV( 'No transpose', MR, MP1, -ONE, A( NR, NR ),
$ LDA, DWORK( NR ), 1, ONE, DWORK( NR1 ), 1 )
IF( COMPLX ) THEN
CALL DAXPY( MR, WI( L+1 ), DWORK( N+NR ), 1,
$ DWORK( NR1 ), 1 )
CALL DCOPY( MR, DWORK( NR ), 1, DWORK( N+NR1 ), 1 )
CALL DAXPY( MR, WR( L+1 ), DWORK( N+NR ), 1,
$ DWORK( N+NR1 ), 1 )
CALL DGEMV( 'No transpose', MR, MP1, -ONE,
$ A( NR, NR ), LDA, DWORK( N+NR ), 1, ONE,
$ DWORK( N+NR1 ), 1 )
IF( NP1.LE.N )
$ CALL DAXPY( MR, -DWORK( N+NP1 ), A( NR, NP1 ), 1,
$ DWORK( N+NR1 ), 1 )
END IF
C
C Solve linear equations for eigenvector elements.
C
CALL MB02QD( 'FreeElements', 'NoPermuting', MR, MR1, NC,
$ TOLDEF, SVLMAX, DWORK( IRMX ), M,
$ DWORK( NR1 ), N, Y( COUNT ), IWORK, RANK,
$ SVAL, DWORK( IWRK ), LDWORK-IWRK+1, INFO )
MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
IF( RANK.LT.MR ) GO TO 80
C
COUNT = COUNT + ( MR1 - MR )*NC
NJ = NR1
ELSE
NJ = NR
END IF
NI = NR + MR - 1
IF( IP.EQ.1 ) THEN
KMR = MR - 1
ELSE
KMR = MR
IF( IP.EQ.2 ) THEN
NI = NI + NBLKCR
ELSE
NI = NI + NBLK( INDCRT-IP+2 ) + 1
IF( COMPLX ) NI = MIN( NI+1, N )
END IF
END IF
C
DO 40 KK = 1, KMR
K = NR + MR - KK
IF( IP.EQ.1 ) K = N - KK
CALL DLARTG( DWORK( K ), DWORK( K+1 ), P, Q, R )
DWORK( K ) = R
DWORK( K+1 ) = ZERO
C
C Transform A.
C
CALL DROT( N-NJ+1, A( K, NJ ), LDA, A( K+1, NJ ), LDA,
$ P, Q )
CALL DROT( NI, A( 1, K ), 1, A( 1, K+1 ), 1, P, Q )
C
IF( K.LT.LP1 ) THEN
C
C Transform B.
C
CALL DROT( M, B( K, 1 ), LDB, B( K+1, 1 ), LDB, P, Q )
END IF
C
C Accumulate transformations.
C
CALL DROT( N, Z( 1, K ), 1, Z( 1, K+1 ), 1, P, Q )
C
IF( COMPLX ) THEN
CALL DROT( 1, DWORK( N+K ), 1, DWORK( N+K+1 ), 1, P,
$ Q )
K = K + 1
IF( K.LT.N ) THEN
CALL DLARTG( DWORK( N+K ), DWORK( N+K+1 ), P, Q,
$ R )
DWORK( N+K ) = R
DWORK( N+K+1 ) = ZERO
C
C Transform A.
C
CALL DROT( N-NJ+1, A( K, NJ ), LDA, A( K+1, NJ ),
$ LDA, P, Q )
CALL DROT( NI, A( 1, K ), 1, A( 1, K+1 ), 1, P, Q )
C
IF( K.LE.LP1 ) THEN
C
C Transform B.
C
CALL DROT( M, B( K, 1 ), LDB, B( K+1, 1 ), LDB,
$ P, Q )
END IF
C
C Accumulate transformations.
C
CALL DROT( N, Z( 1, K ), 1, Z( 1, K+1 ), 1, P, Q )
C
END IF
END IF
40 CONTINUE
C
IF( IP.NE.INDCRT ) THEN
MR = MR1
NR = NR1
IF( IP.NE.INDCN1 ) THEN
INDCN2 = INDCRT - IP - 1
MR1 = NBLK( INDCN2 )
NR1 = NR1 - MR1
END IF
END IF
50 CONTINUE
C
IF( .NOT.COMPLX ) THEN
C
C Find one column of G.
C
CALL DLACPY( 'Full', M1, M, B( L+1, 1 ), LDB, DWORK( IRMX ),
$ M )
CALL DCOPY( M1, A( L+1, L ), 1, G( 1, L ), 1 )
ELSE
C
C Find two columns of G.
C
IF( LP1.LT.N ) THEN
LP1 = LP1 + 1
K = L + 2
ELSE
K = L + 1
END IF
CALL DLACPY( 'Full', M1, M, B( K, 1 ), LDB, DWORK( IRMX ),
$ M )
CALL DLACPY( 'Full', M1, 2, A( K, L ), LDA, G( 1, L ), LDG )
IF( K.EQ.L+1 ) THEN
G( 1, L ) = G( 1, L ) -
$ ( DWORK( N+L+1 ) / DWORK( L ) )*WI( L+1 )
G( 1, L+1 ) = G( 1, L+1 ) - WR(L+1) +
$ ( DWORK( N+L ) / DWORK( L ) )*WI( L+1 )
END IF
END IF
C
CALL MB02QD( 'FreeElements', 'NoPermuting', M1, M, NC, TOLDEF,
$ SVLMAX, DWORK( IRMX ), M, G( 1, L ), LDG,
$ Y( COUNT ), IWORK, RANK, SVAL, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO )
MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
IF( RANK.LT.M1 ) GO TO 80
C
COUNT = COUNT + ( M - M1 )*NC
CALL DGEMM( 'No transpose', 'No transpose', LP1, NC, M, -ONE,
$ B, LDB, G( 1, L ), LDG, ONE, A( 1, L ), LDA )
L = L + 1
NBLKCR = NBLKCR - 1
IF( NBLKCR.EQ.0 ) THEN
INDCRT = INDCRT - 1
NBLKCR = NBLK( INDCRT )
END IF
IF( COMPLX ) THEN
WI( L ) = -WI( L-1 )
L = L + 1
NBLKCR = NBLKCR - 1
IF( NBLKCR.EQ.0 ) THEN
INDCRT = INDCRT - 1
IF( INDCRT.GT.0 ) NBLKCR = NBLK( INDCRT )
END IF
END IF
MR = NBLKCR
NR = N - MR + 1
GO TO 30
END IF
C END WHILE 30
C
IF( L.LE.N ) THEN
C
C Find the remaining columns of G.
C
C QR decomposition of the free eigenvectors.
C
DO 60 I = 1, MR - 1
IA = L + I - 1
MI = MR - I + 1
CALL DCOPY( MI, Y( COUNT ), 1, DWORK( 1 ), 1 )
COUNT = COUNT + MI
CALL DLARFG( MI, DWORK( 1 ), DWORK( 2 ), 1, R )
DWORK( 1 ) = ONE
C
C Transform A.
C
CALL DLARF( 'Left', MI, MR, DWORK( 1 ), 1, R, A( IA, L ),
$ LDA, DWORK( N+1 ) )
CALL DLARF( 'Right', N, MI, DWORK( 1 ), 1, R, A( 1, IA ),
$ LDA, DWORK( N+1 ) )
C
C Transform B.
C
CALL DLARF( 'Left', MI, M, DWORK( 1 ), 1, R, B( IA, 1 ),
$ LDB, DWORK( N+1 ) )
C
C Accumulate transformations.
C
CALL DLARF( 'Right', N, MI, DWORK( 1 ), 1, R, Z( 1, IA ),
$ LDZ, DWORK( N+1 ) )
60 CONTINUE
C
I = 0
C REPEAT
70 CONTINUE
I = I + 1
IA = L + I - 1
IF( WI( IA ).EQ.ZERO ) THEN
CALL DCOPY( MR, A( IA, L ), LDA, G( I, L ), LDG )
CALL DAXPY( MR-I, -ONE, Y( COUNT ), 1, G( I, L+I ), LDG )
COUNT = COUNT + MR - I
G( I, IA ) = G( I, IA ) - WR( IA )
ELSE
CALL DLACPY( 'Full', 2, MR, A( IA, L ), LDA, G( I, L ),
$ LDG )
CALL DAXPY( MR-I-1, -ONE, Y( COUNT ), 2, G( I, L+I+1 ),
$ LDG )
CALL DAXPY( MR-I-1, -ONE, Y( COUNT+1 ), 2,
$ G( I+1, L+I+1 ), LDG )
COUNT = COUNT + 2*( MR - I - 1 )
G( I, IA ) = G(I, IA ) - WR( IA )
G( I, IA+1 ) = G(I, IA+1 ) - WI( IA )
G( I+1, IA ) = G(I+1, IA ) - WI( IA+1 )
G( I+1, IA+1 ) = G(I+1, IA+1 ) - WR( IA+1 )
I = I + 1
END IF
IF( I.LT.MR ) GO TO 70
C UNTIL I.GE.MR
C
CALL DLACPY( 'Full', MR, M, B( L, 1 ), LDB, DWORK( IRMX ), M )
CALL MB02QD( 'FreeElements', 'NoPermuting', MR, M, MR, TOLDEF,
$ SVLMAX, DWORK( IRMX ), M, G( 1, L ), LDG,
$ Y( COUNT ), IWORK, RANK, SVAL, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO )
MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
IF( RANK.LT.MR ) GO TO 80
C
COUNT = COUNT + ( M - MR )*MR
CALL DGEMM( 'No transpose', 'No transpose', N, MR, M, -ONE, B,
$ LDB, G( 1, L ), LDG, ONE, A( 1, L ), LDA )
END IF
C
C Transform G:
C G := G * Z'.
C
CALL DGEMM( 'No transpose', 'Transpose', M, N, N, ONE, G, LDG,
$ Z, LDZ, ZERO, DWORK( 1 ), M )
CALL DLACPY( 'Full', M, N, DWORK( 1 ), M, G, LDG )
COUNT = COUNT - 1
C
IF( N.GT.2) THEN
C
C Set the elements of A below the Hessenberg part to zero.
C
CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, A( 3, 1 ), LDA )
END IF
DWORK( 1 ) = MAXWRK
RETURN
C
C Exit with INFO = 1 if the pair ( A, B ) is not controllable or
C the free parameters are not set appropriately.
C
80 INFO = 1
RETURN
C *** Last line of SB01DD ***
END
|