File: SB01DD.f

package info (click to toggle)
dynare 4.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 40,640 kB
  • sloc: fortran: 82,231; cpp: 72,734; ansic: 28,874; pascal: 13,241; sh: 4,300; objc: 3,281; yacc: 2,833; makefile: 1,288; lex: 1,162; python: 162; lisp: 54; xml: 8
file content (643 lines) | stat: -rw-r--r-- 22,735 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
      SUBROUTINE SB01DD( N, M, INDCON, A, LDA, B, LDB, NBLK, WR, WI,
     $                   Z, LDZ, Y, COUNT, G, LDG, TOL, IWORK, DWORK,
     $                   LDWORK, INFO )
C
C     SLICOT RELEASE 5.0.
C
C     Copyright (c) 2002-2009 NICONET e.V.
C
C     This program is free software: you can redistribute it and/or
C     modify it under the terms of the GNU General Public License as
C     published by the Free Software Foundation, either version 2 of
C     the License, or (at your option) any later version.
C
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU General Public License for more details.
C
C     You should have received a copy of the GNU General Public License
C     along with this program.  If not, see
C     <http://www.gnu.org/licenses/>.
C
C     PURPOSE
C
C     To compute for a controllable matrix pair ( A, B ) a matrix G
C     such that the matrix A - B*G has the desired eigenstructure,
C     specified by desired eigenvalues and free eigenvector elements.
C
C     The pair ( A, B ) should be given in orthogonal canonical form
C     as returned by the SLICOT Library routine AB01ND.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A and the number of rows of the
C             matrix B.  N >= 0.
C
C     M       (input) INTEGER
C             The number of columns of the matrix B.  M >= 0.
C
C     INDCON  (input) INTEGER
C             The controllability index of the pair ( A, B ).
C             0 <= INDCON <= N.
C
C     A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
C             On entry, the leading N-by-N part of this array must
C             contain the N-by-N matrix A in orthogonal canonical form,
C             as returned by SLICOT Library routine AB01ND.
C             On exit, the leading N-by-N part of this array contains
C             the real Schur form of the matrix A - B*G.
C             The elements below the real Schur form of A are set to
C             zero.
C
C     LDA     INTEGER
C             The leading dimension of the array A.  LDA >= max(1,N).
C
C     B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
C             On entry, the leading N-by-M part of this array must
C             contain the N-by-M matrix B in orthogonal canonical form,
C             as returned by SLICOT Library routine AB01ND.
C             On exit, the leading N-by-M part of this array contains
C             the transformed matrix B.
C
C     LDB     INTEGER
C             The leading dimension of the array B.  LDB >= max(1,N).
C
C     NBLK    (input) INTEGER array, dimension (N)
C             The leading INDCON elements of this array must contain the
C             orders of the diagonal blocks in the orthogonal canonical
C             form of A, as returned by SLICOT Library routine AB01ND.
C             The values of these elements must satisfy the following
C             conditions:
C             NBLK(1) >= NBLK(2) >= ... >= NBLK(INDCON),
C             NBLK(1) + NBLK(2) + ... + NBLK(INDCON) = N.
C
C     WR      (input) DOUBLE PRECISION array, dimension (N)
C     WI      (input) DOUBLE PRECISION array, dimension (N)
C             These arrays must contain the real and imaginary parts,
C             respectively, of the desired poles of the closed-loop
C             system, i.e., the eigenvalues of A - B*G. The poles can be
C             unordered, except that complex conjugate pairs of poles
C             must appear consecutively.
C             The elements of WI for complex eigenvalues are modified
C             internally, but restored on exit.
C
C     Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
C             On entry, the leading N-by-N part of this array must
C             contain the orthogonal matrix Z generated by SLICOT
C             Library routine AB01ND in the reduction of ( A, B ) to
C             orthogonal canonical form.
C             On exit, the leading N-by-N part of this array contains
C             the orthogonal transformation matrix which reduces A - B*G
C             to real Schur form.
C
C     LDZ     INTEGER
C             The leading dimension of the array Z.  LDZ >= max(1,N).
C
C     Y       (input) DOUBLE PRECISION array, dimension (M*N)
C             Y contains elements which are used as free parameters
C             in the eigenstructure design. The values of these
C             parameters are often set by an external optimization
C             procedure.
C
C     COUNT   (output) INTEGER
C             The actual number of elements in Y used as free
C             eigenvector and feedback matrix elements in the
C             eigenstructure design.
C
C     G       (output) DOUBLE PRECISION array, dimension (LDG,N)
C             The leading M-by-N part of this array contains the
C             feedback matrix which assigns the desired eigenstructure
C             of A - B*G.
C
C     LDG     INTEGER
C             The leading dimension of the array G.  LDG >= max(1,M).
C
C     Tolerances
C
C     TOL     DOUBLE PRECISION
C             The tolerance to be used in rank determination when
C             transforming (A, B). If the user sets TOL > 0, then
C             the given value of TOL is used as a lower bound for the
C             reciprocal condition number (see the description of the
C             argument RCOND in the SLICOT routine MB03OD);  a
C             (sub)matrix whose estimated condition number is less than
C             1/TOL is considered to be of full rank.  If the user sets
C             TOL <= 0, then an implicitly computed, default tolerance,
C             defined by  TOLDEF = N*N*EPS,  is used instead, where
C             EPS  is the machine precision (see LAPACK Library routine
C             DLAMCH).
C
C     Workspace
C
C     IWORK   INTEGER array, dimension (M)
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             On exit, if INFO = 0, DWORK(1) returns the optimal value
C             of LDWORK.
C
C     LDWORK  INTEGER
C             The length of the array DWORK.
C             LDWORK >= MAX(M*N,M*M+2*N+4*M+1).
C             For optimum performance LDWORK should be larger.
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             < 0:  if INFO = -i, the i-th argument had an illegal
C                   value;
C             = 1:  if the pair ( A, B ) is not controllable or the free
C                   parameters are not set appropriately.
C
C     METHOD
C
C     The routine implements the method proposed in [1], [2].
C
C     REFERENCES
C
C     [1] Petkov, P.Hr., Konstantinov, M.M., Gu, D.W. and
C         Postlethwaite, I.
C         Optimal pole assignment design of linear multi-input systems.
C         Report 96-11, Department of Engineering, Leicester University,
C         1996.
C
C     [2] Petkov, P.Hr., Christov, N.D. and Konstantinov, M.M.
C         A computational algorithm for pole assignment of linear multi
C         input systems. IEEE Trans. Automatic Control, vol. AC-31,
C         pp. 1044-1047, 1986.
C
C     NUMERICAL ASPECTS
C
C     The method implemented is backward stable.
C
C     FURTHER COMMENTS
C
C     The eigenvalues of the real Schur form matrix As, returned in the
C     array A, are very close to the desired eigenvalues WR+WI*i.
C     However, the eigenvalues of the closed-loop matrix A - B*G,
C     computed by the QR algorithm using the matrices A and B, given on
C     entry, may be far from WR+WI*i, although the relative error
C        norm( Z'*(A - B*G)*Z - As )/norm( As )
C     is close to machine accuracy. This may happen when the eigenvalue
C     problem for the matrix A - B*G is ill-conditioned.
C
C     CONTRIBUTORS
C
C     P.Hr. Petkov, Technical University of Sofia, Oct. 1998.
C     V. Sima, Katholieke Universiteit Leuven, Jan. 1999, SLICOT Library
C     version.
C
C     REVISIONS
C
C     V. Sima, Research Institute for Informatics, Bucharest, Mar. 2005.
C
C     KEYWORDS
C
C     Closed loop spectrum, closed loop systems, eigenvalue assignment,
C     orthogonal canonical form, orthogonal transformation, pole
C     placement, Schur form.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
C
C     .. Scalar Arguments ..
      INTEGER            COUNT, INDCON, INFO, LDA, LDB, LDG, LDWORK,
     $                   LDZ, M, N
      DOUBLE PRECISION   TOL
C     ..
C     .. Array Arguments ..
      INTEGER            IWORK( * ), NBLK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DWORK( * ),
     $                   G( LDG, * ), WI( * ), WR( * ), Y( * ),
     $                   Z( LDZ, * )
C     ..
C     .. Local Scalars ..
      LOGICAL            COMPLX
      INTEGER            I, IA, INDCN1, INDCN2, INDCRT, IP, IRMX, IWRK,
     $                   K, KK, KMR, L, LP1, M1, MAXWRK, MI, MP1, MR,
     $                   MR1, NBLKCR, NC, NI, NJ, NP1, NR, NR1, RANK
      DOUBLE PRECISION   P, Q, R, S, SVLMAX, TOLDEF
C     ..
C     .. Local Arrays ..
      DOUBLE PRECISION   SVAL( 3 )
C     ..
C     .. External Functions ..
      DOUBLE PRECISION   DASUM, DLAMCH, DLANGE, DLAPY2
      EXTERNAL           DASUM, DLAMCH, DLANGE, DLAPY2
C     ..
C     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGEMM, DGEMV, DLACPY, DLARF,
     $                   DLARFG, DLARTG, DLASET, DROT, DSCAL, MB02QD,
     $                   XERBLA
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC          DBLE, INT, MAX, MIN
C     ..
C     .. Executable Statements ..
C
C     Test the input arguments.
C
      INFO = 0
      NR   = 0
      IWRK = MAX( M*N, M*M + 2*N + 4*M + 1 )
      DO 10 I = 1, MIN( INDCON, N )
         NR = NR + NBLK( I )
         IF( I.GT.1 ) THEN
            IF( NBLK( I-1 ).LT.NBLK( I ) )
     $         INFO = -8
         END IF
   10 CONTINUE
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( INDCON.LT.0 .OR. INDCON.GT.N ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -7
      ELSE IF( NR.NE.N ) THEN
         INFO = -8
      ELSE IF( LDZ.LT.MAX( 1, N ) ) THEN
         INFO = -12
      ELSE IF( LDG.LT.MAX( 1, M ) ) THEN
         INFO = -16
      ELSE IF( LDWORK.LT.IWRK ) THEN
         INFO = -20
      END IF
C
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SB01DD', -INFO )
         RETURN
      END IF
C
C     Quick return if possible.
C
      IF( MIN( M, N, INDCON ).EQ.0 ) THEN
         COUNT = 0
         DWORK( 1 ) = ONE
         RETURN
      END IF
C
      MAXWRK = IWRK
      TOLDEF = TOL
      IF ( TOLDEF.LE.ZERO ) THEN
C
C        Use the default tolerance, based on machine precision.
C
         TOLDEF = DBLE( N*N )*DLAMCH( 'EPSILON' )
      END IF
C
      IRMX = 2*N + 1
      IWRK = IRMX + M*M
      M1   = NBLK( 1 )
      COUNT  = 1
      INDCRT = INDCON
      NBLKCR = NBLK( INDCRT )
C
C     Compute the Frobenius norm of [ B  A ] (used for rank estimation),
C     taking into account the structure.
C
      NR = M1
      NC = 1
      SVLMAX = DLANGE( 'Frobenius', M1, M, B, LDB, DWORK )
C
      DO 20 I = 1, INDCRT - 1
         NR = NR + NBLK( I+1 )
         SVLMAX = DLAPY2( SVLMAX,
     $                    DLANGE( 'Frobenius', NR, NBLK( I ),
     $                            A( 1, NC ), LDA, DWORK ) )
         NC = NC + NBLK( I )
   20 CONTINUE
C
      SVLMAX = DLAPY2( SVLMAX,
     $                 DLANGE( 'Frobenius', N, NBLKCR, A( 1, NC ), LDA,
     $                         DWORK ) )
      L  = 1
      MR = NBLKCR
      NR = N - MR + 1
   30 CONTINUE
C     WHILE( INDCRT.GT.1 )LOOP
      IF( INDCRT.GT.1 ) THEN
C
C        Assign next eigenvalue/eigenvector.
C
         LP1 = L + M1
         INDCN1 = INDCRT - 1
         MR1 = NBLK( INDCN1 )
         NR1 = NR - MR1
         COMPLX = WI(L).NE.ZERO
         CALL DCOPY( MR, Y( COUNT ), 1, DWORK( NR ), 1 )
         COUNT = COUNT + MR
         NC = 1
         IF( COMPLX ) THEN
            CALL DCOPY( MR, Y( COUNT ), 1, DWORK( N+NR ), 1 )
            COUNT = COUNT + MR
            WI( L+1 ) = WI( L )*WI( L+1 )
            NC = 2
         END IF
C
C        Compute and transform eiegenvector.
C
         DO 50 IP = 1, INDCRT
            IF( IP.NE.INDCRT ) THEN
               CALL DLACPY( 'Full', MR, MR1, A( NR, NR1 ), LDA,
     $                      DWORK( IRMX ), M )
               IF( IP.EQ.1 ) THEN
                  MP1 = MR
                  NP1 = NR + MP1
               ELSE
                  MP1 = MR + 1
                  NP1 = NR + MP1
                  S = DASUM( MP1, DWORK( NR ), 1 )
                  IF( COMPLX ) S = S + DASUM( MP1, DWORK( N+NR ), 1 )
                  IF( S.NE.ZERO ) THEN
C
C                    Scale eigenvector elements.
C
                     CALL DSCAL( MP1, ONE/S, DWORK( NR ), 1 )
                     IF( COMPLX ) THEN
                        CALL DSCAL( MP1, ONE/S, DWORK( N+NR ), 1 )
                        IF( NP1.LE.N )
     $                     DWORK( N+NP1 ) = DWORK( N+NP1 ) / S
                     END IF
                  END IF
               END IF
C
C              Compute the right-hand side of the eigenvector equations.
C
               CALL DCOPY( MR, DWORK( NR ), 1, DWORK( NR1 ), 1 )
               CALL DSCAL( MR, WR( L ), DWORK( NR1 ), 1 )
               CALL DGEMV( 'No transpose', MR, MP1, -ONE, A( NR, NR ),
     $                     LDA, DWORK( NR ), 1, ONE, DWORK( NR1 ), 1 )
               IF( COMPLX ) THEN
                  CALL DAXPY( MR, WI( L+1 ), DWORK( N+NR ), 1,
     $                        DWORK( NR1 ), 1 )
                  CALL DCOPY( MR, DWORK( NR ), 1, DWORK( N+NR1 ), 1 )
                  CALL DAXPY( MR, WR( L+1 ), DWORK( N+NR ), 1,
     $                        DWORK( N+NR1 ), 1 )
                  CALL DGEMV( 'No transpose', MR, MP1, -ONE,
     $                        A( NR, NR ), LDA, DWORK( N+NR ), 1, ONE,
     $                        DWORK( N+NR1 ), 1 )
                  IF( NP1.LE.N )
     $               CALL DAXPY( MR, -DWORK( N+NP1 ), A( NR, NP1 ), 1,
     $                           DWORK( N+NR1 ), 1 )
               END IF
C
C              Solve linear equations for eigenvector elements.
C
               CALL MB02QD( 'FreeElements', 'NoPermuting', MR, MR1, NC,
     $                      TOLDEF, SVLMAX, DWORK( IRMX ), M,
     $                      DWORK( NR1 ), N, Y( COUNT ), IWORK, RANK,
     $                      SVAL, DWORK( IWRK ), LDWORK-IWRK+1, INFO )
               MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
               IF( RANK.LT.MR ) GO TO 80
C
               COUNT = COUNT + ( MR1 - MR )*NC
               NJ = NR1
            ELSE
               NJ = NR
            END IF
            NI = NR + MR - 1
            IF( IP.EQ.1 ) THEN
               KMR = MR - 1
            ELSE
               KMR = MR
               IF( IP.EQ.2 ) THEN
                  NI = NI + NBLKCR
               ELSE
                  NI = NI + NBLK( INDCRT-IP+2 ) + 1
                  IF( COMPLX ) NI = MIN( NI+1, N )
               END IF
            END IF
C
            DO 40 KK = 1, KMR
               K = NR + MR - KK
               IF( IP.EQ.1 ) K = N - KK
               CALL DLARTG( DWORK( K ), DWORK( K+1 ), P, Q, R )
               DWORK( K )   = R
               DWORK( K+1 ) = ZERO
C
C              Transform  A.
C
               CALL DROT( N-NJ+1, A( K, NJ ), LDA, A( K+1, NJ ), LDA,
     $                    P, Q )
               CALL DROT( NI, A( 1, K ), 1, A( 1, K+1 ), 1, P, Q )
C
               IF( K.LT.LP1 ) THEN
C
C                 Transform B.
C
                  CALL DROT( M, B( K, 1 ), LDB, B( K+1, 1 ), LDB, P, Q )
               END IF
C
C              Accumulate transformations.
C
               CALL DROT( N, Z( 1, K ), 1, Z( 1, K+1 ), 1, P, Q )
C
               IF( COMPLX ) THEN
                  CALL DROT( 1, DWORK( N+K ), 1, DWORK( N+K+1 ), 1, P,
     $                       Q )
                  K = K + 1
                  IF( K.LT.N ) THEN
                     CALL DLARTG( DWORK( N+K ), DWORK( N+K+1 ), P, Q,
     $                            R )
                     DWORK( N+K )   = R
                     DWORK( N+K+1 ) = ZERO
C
C                    Transform  A.
C
                     CALL DROT( N-NJ+1, A( K, NJ ), LDA, A( K+1, NJ ),
     $                          LDA, P, Q )
                     CALL DROT( NI, A( 1, K ), 1, A( 1, K+1 ), 1, P, Q )
C
                     IF( K.LE.LP1 ) THEN
C
C                       Transform B.
C
                        CALL DROT( M, B( K, 1 ), LDB, B( K+1, 1 ), LDB,
     $                             P, Q )
                     END IF
C
C                    Accumulate transformations.
C
                     CALL DROT( N, Z( 1, K ), 1, Z( 1, K+1 ), 1, P, Q )
C
                  END IF
               END IF
   40       CONTINUE
C
            IF( IP.NE.INDCRT ) THEN
               MR = MR1
               NR = NR1
               IF( IP.NE.INDCN1 ) THEN
                  INDCN2 = INDCRT - IP - 1
                  MR1 = NBLK( INDCN2 )
                  NR1 = NR1 - MR1
               END IF
            END IF
   50    CONTINUE
C
         IF( .NOT.COMPLX ) THEN
C
C           Find one column of G.
C
            CALL DLACPY( 'Full', M1, M, B( L+1, 1 ), LDB, DWORK( IRMX ),
     $                   M )
            CALL DCOPY(  M1, A( L+1, L ), 1, G( 1, L ), 1 )
         ELSE
C
C           Find two columns of G.
C
            IF( LP1.LT.N ) THEN
               LP1 = LP1 + 1
               K = L + 2
            ELSE
               K = L + 1
            END IF
            CALL DLACPY( 'Full', M1, M, B( K, 1 ), LDB, DWORK( IRMX ),
     $                   M )
            CALL DLACPY( 'Full', M1, 2, A( K, L ), LDA, G( 1, L ), LDG )
            IF( K.EQ.L+1 ) THEN
               G( 1, L )   = G( 1, L ) -
     $                       ( DWORK( N+L+1 ) / DWORK( L ) )*WI( L+1 )
               G( 1, L+1 ) = G( 1, L+1 ) - WR(L+1) +
     $                         ( DWORK( N+L ) / DWORK( L ) )*WI( L+1 )
            END IF
         END IF
C
         CALL MB02QD( 'FreeElements', 'NoPermuting', M1, M, NC, TOLDEF,
     $                SVLMAX, DWORK( IRMX ), M, G( 1, L ), LDG,
     $                Y( COUNT ), IWORK, RANK, SVAL, DWORK( IWRK ),
     $                LDWORK-IWRK+1, INFO )
         MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
         IF( RANK.LT.M1 ) GO TO 80
C
         COUNT = COUNT + ( M - M1 )*NC
         CALL DGEMM( 'No transpose', 'No transpose', LP1, NC, M, -ONE,
     $               B, LDB, G( 1, L ), LDG, ONE, A( 1, L ), LDA )
         L = L + 1
         NBLKCR = NBLKCR - 1
         IF( NBLKCR.EQ.0 ) THEN
            INDCRT = INDCRT - 1
            NBLKCR = NBLK( INDCRT )
         END IF
         IF( COMPLX ) THEN
            WI( L ) = -WI( L-1 )
            L = L + 1
            NBLKCR = NBLKCR - 1
            IF( NBLKCR.EQ.0 ) THEN
               INDCRT = INDCRT - 1
               IF( INDCRT.GT.0 ) NBLKCR = NBLK( INDCRT )
            END IF
         END IF
         MR = NBLKCR
         NR = N - MR + 1
         GO TO 30
      END IF
C     END WHILE 30
C
      IF( L.LE.N ) THEN
C
C        Find the remaining columns of G.
C
C        QR decomposition of the free eigenvectors.
C
         DO 60 I = 1, MR - 1
            IA = L + I - 1
            MI = MR - I + 1
            CALL DCOPY( MI, Y( COUNT ), 1, DWORK( 1 ), 1 )
            COUNT = COUNT + MI
            CALL DLARFG( MI, DWORK( 1 ), DWORK( 2 ), 1, R )
            DWORK( 1 ) = ONE
C
C           Transform A.
C
            CALL DLARF( 'Left', MI, MR, DWORK( 1 ), 1, R, A( IA, L ),
     $                  LDA, DWORK( N+1 ) )
            CALL DLARF( 'Right', N, MI, DWORK( 1 ), 1, R, A( 1, IA ),
     $                  LDA, DWORK( N+1 ) )
C
C           Transform B.
C
            CALL DLARF( 'Left', MI, M, DWORK( 1 ), 1, R, B( IA, 1 ),
     $                  LDB, DWORK( N+1 ) )
C
C           Accumulate transformations.
C
            CALL DLARF( 'Right', N, MI, DWORK( 1 ), 1, R, Z( 1, IA ),
     $                  LDZ, DWORK( N+1 ) )
   60    CONTINUE
C
         I = 0
C        REPEAT
   70    CONTINUE
            I  = I + 1
            IA = L + I - 1
            IF( WI( IA ).EQ.ZERO ) THEN
               CALL DCOPY( MR, A( IA, L ), LDA, G( I, L ), LDG )
               CALL DAXPY( MR-I, -ONE, Y( COUNT ), 1, G( I, L+I ), LDG )
               COUNT = COUNT + MR - I
               G( I, IA ) = G( I, IA ) - WR( IA )
            ELSE
               CALL DLACPY( 'Full', 2, MR, A( IA, L ), LDA, G( I, L ),
     $                      LDG )
               CALL DAXPY(  MR-I-1, -ONE, Y( COUNT ), 2, G( I, L+I+1 ),
     $                      LDG )
               CALL DAXPY(  MR-I-1, -ONE, Y( COUNT+1 ), 2,
     $                      G( I+1, L+I+1 ), LDG )
               COUNT = COUNT + 2*( MR - I - 1 )
               G( I, IA )     = G(I, IA )     - WR( IA )
               G( I, IA+1 )   = G(I, IA+1 )   - WI( IA )
               G( I+1, IA )   = G(I+1, IA )   - WI( IA+1 )
               G( I+1, IA+1 ) = G(I+1, IA+1 ) - WR( IA+1 )
               I = I + 1
            END IF
         IF( I.LT.MR ) GO TO 70
C        UNTIL I.GE.MR
C
         CALL DLACPY( 'Full', MR, M, B( L, 1 ), LDB, DWORK( IRMX ), M )
         CALL MB02QD( 'FreeElements', 'NoPermuting', MR, M, MR, TOLDEF,
     $                SVLMAX, DWORK( IRMX ), M, G( 1, L ), LDG,
     $                Y( COUNT ), IWORK, RANK, SVAL, DWORK( IWRK ),
     $                LDWORK-IWRK+1, INFO )
         MAXWRK = MAX( MAXWRK, INT( DWORK( IWRK ) ) + IWRK - 1 )
         IF( RANK.LT.MR ) GO TO 80
C
         COUNT = COUNT + ( M - MR )*MR
         CALL DGEMM( 'No transpose', 'No transpose', N, MR, M, -ONE, B,
     $               LDB, G( 1, L ), LDG, ONE, A( 1, L ), LDA )
      END IF
C
C     Transform G:
C     G := G * Z'.
C
      CALL DGEMM( 'No transpose', 'Transpose', M, N, N, ONE, G, LDG,
     $            Z, LDZ, ZERO, DWORK( 1 ), M )
      CALL DLACPY( 'Full', M, N, DWORK( 1 ), M, G, LDG )
      COUNT = COUNT - 1
C
      IF( N.GT.2) THEN
C
C        Set the elements of A below the Hessenberg part to zero.
C
         CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, A( 3, 1 ), LDA )
      END IF
      DWORK( 1 ) = MAXWRK
      RETURN
C
C     Exit with INFO = 1 if the pair ( A, B ) is not controllable or
C     the free parameters are not set appropriately.
C
   80 INFO = 1
      RETURN
C *** Last line of SB01DD ***
      END