1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
|
SUBROUTINE SB02OD( DICO, JOBB, FACT, UPLO, JOBL, SORT, N, M, P, A,
$ LDA, B, LDB, Q, LDQ, R, LDR, L, LDL, RCOND, X,
$ LDX, ALFAR, ALFAI, BETA, S, LDS, T, LDT, U,
$ LDU, TOL, IWORK, DWORK, LDWORK, BWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X either the continuous-time algebraic Riccati
C equation
C -1
C Q + A'X + XA - (L+XB)R (L+XB)' = 0 (1)
C
C or the discrete-time algebraic Riccati equation
C -1
C X = A'XA - (L+A'XB)(R + B'XB) (L+A'XB)' + Q (2)
C
C where A, B, Q, R, and L are N-by-N, N-by-M, N-by-N, M-by-M and
C N-by-M matrices, respectively, such that Q = C'C, R = D'D and
C L = C'D; X is an N-by-N symmetric matrix.
C The routine also returns the computed values of the closed-loop
C spectrum of the system, i.e., the stable eigenvalues lambda(1),
C ..., lambda(N) of the corresponding Hamiltonian or symplectic
C pencil, in the continuous-time case or discrete-time case,
C respectively.
C -1
C Optionally, matrix G = BR B' may be given instead of B and R.
C Other options include the case with Q and/or R given in a
C factored form, Q = C'C, R = D'D, and with L a zero matrix.
C
C The routine uses the method of deflating subspaces, based on
C reordering the eigenvalues in a generalized Schur matrix pair.
C A standard eigenproblem is solved in the continuous-time case
C if G is given.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the type of Riccati equation to be solved as
C follows:
C = 'C': Equation (1), continuous-time case;
C = 'D': Equation (2), discrete-time case.
C
C JOBB CHARACTER*1
C Specifies whether or not the matrix G is given, instead
C of the matrices B and R, as follows:
C = 'B': B and R are given;
C = 'G': G is given.
C
C FACT CHARACTER*1
C Specifies whether or not the matrices Q and/or R (if
C JOBB = 'B') are factored, as follows:
C = 'N': Not factored, Q and R are given;
C = 'C': C is given, and Q = C'C;
C = 'D': D is given, and R = D'D;
C = 'B': Both factors C and D are given, Q = C'C, R = D'D.
C
C UPLO CHARACTER*1
C If JOBB = 'G', or FACT = 'N', specifies which triangle of
C the matrices G and Q (if FACT = 'N'), or Q and R (if
C JOBB = 'B'), is stored, as follows:
C = 'U': Upper triangle is stored;
C = 'L': Lower triangle is stored.
C
C JOBL CHARACTER*1
C Specifies whether or not the matrix L is zero, as follows:
C = 'Z': L is zero;
C = 'N': L is nonzero.
C JOBL is not used if JOBB = 'G' and JOBL = 'Z' is assumed.
C SLICOT Library routine SB02MT should be called just before
C SB02OD, for obtaining the results when JOBB = 'G' and
C JOBL = 'N'.
C
C SORT CHARACTER*1
C Specifies which eigenvalues should be obtained in the top
C of the generalized Schur form, as follows:
C = 'S': Stable eigenvalues come first;
C = 'U': Unstable eigenvalues come first.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The actual state dimension, i.e. the order of the matrices
C A, Q, and X, and the number of rows of the matrices B
C and L. N >= 0.
C
C M (input) INTEGER
C The number of system inputs. If JOBB = 'B', M is the
C order of the matrix R, and the number of columns of the
C matrix B. M >= 0.
C M is not used if JOBB = 'G'.
C
C P (input) INTEGER
C The number of system outputs. If FACT = 'C' or 'D' or 'B',
C P is the number of rows of the matrices C and/or D.
C P >= 0.
C Otherwise, P is not used.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C state matrix A of the system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,*)
C If JOBB = 'B', the leading N-by-M part of this array must
C contain the input matrix B of the system.
C If JOBB = 'G', the leading N-by-N upper triangular part
C (if UPLO = 'U') or lower triangular part (if UPLO = 'L')
C of this array must contain the upper triangular part or
C lower triangular part, respectively, of the matrix
C -1
C G = BR B'. The stricly lower triangular part (if
C UPLO = 'U') or stricly upper triangular part (if
C UPLO = 'L') is not referenced.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C Q (input) DOUBLE PRECISION array, dimension (LDQ,N)
C If FACT = 'N' or 'D', the leading N-by-N upper triangular
C part (if UPLO = 'U') or lower triangular part (if UPLO =
C 'L') of this array must contain the upper triangular part
C or lower triangular part, respectively, of the symmetric
C state weighting matrix Q. The stricly lower triangular
C part (if UPLO = 'U') or stricly upper triangular part (if
C UPLO = 'L') is not referenced.
C If JOBB = 'B', the triangular part of this array defined
C by UPLO is modified internally, but is restored on exit.
C If FACT = 'C' or 'B', the leading P-by-N part of this
C array must contain the output matrix C of the system.
C If JOBB = 'B', this part is modified internally, but is
C restored on exit.
C
C LDQ INTEGER
C The leading dimension of array Q.
C LDQ >= MAX(1,N) if FACT = 'N' or 'D',
C LDQ >= MAX(1,P) if FACT = 'C' or 'B'.
C
C R (input) DOUBLE PRECISION array, dimension (LDR,M)
C If FACT = 'N' or 'C', the leading M-by-M upper triangular
C part (if UPLO = 'U') or lower triangular part (if UPLO =
C 'L') of this array must contain the upper triangular part
C or lower triangular part, respectively, of the symmetric
C input weighting matrix R. The stricly lower triangular
C part (if UPLO = 'U') or stricly upper triangular part (if
C UPLO = 'L') is not referenced.
C The triangular part of this array defined by UPLO is
C modified internally, but is restored on exit.
C If FACT = 'D' or 'B', the leading P-by-M part of this
C array must contain the direct transmission matrix D of the
C system. This part is modified internally, but is restored
C on exit.
C If JOBB = 'G', this array is not referenced.
C
C LDR INTEGER
C The leading dimension of array R.
C LDR >= MAX(1,M) if JOBB = 'B' and FACT = 'N' or 'C';
C LDR >= MAX(1,P) if JOBB = 'B' and FACT = 'D' or 'B';
C LDR >= 1 if JOBB = 'G'.
C
C L (input) DOUBLE PRECISION array, dimension (LDL,M)
C If JOBL = 'N' (and JOBB = 'B'), the leading N-by-M part of
C this array must contain the cross weighting matrix L.
C This part is modified internally, but is restored on exit.
C If JOBL = 'Z' or JOBB = 'G', this array is not referenced.
C
C LDL INTEGER
C The leading dimension of array L.
C LDL >= MAX(1,N) if JOBL = 'N' and JOBB = 'B';
C LDL >= 1 if JOBL = 'Z' or JOBB = 'G'.
C
C RCOND (output) DOUBLE PRECISION
C An estimate of the reciprocal of the condition number (in
C the 1-norm) of the N-th order system of algebraic
C equations from which the solution matrix X is obtained.
C
C X (output) DOUBLE PRECISION array, dimension (LDX,N)
C The leading N-by-N part of this array contains the
C solution matrix X of the problem.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= MAX(1,N).
C
C ALFAR (output) DOUBLE PRECISION array, dimension (2*N)
C ALFAI (output) DOUBLE PRECISION array, dimension (2*N)
C BETA (output) DOUBLE PRECISION array, dimension (2*N)
C The generalized eigenvalues of the 2N-by-2N matrix pair,
C ordered as specified by SORT (if INFO = 0). For instance,
C if SORT = 'S', the leading N elements of these arrays
C contain the closed-loop spectrum of the system matrix
C A - BF, where F is the optimal feedback matrix computed
C based on the solution matrix X. Specifically,
C lambda(k) = [ALFAR(k)+j*ALFAI(k)]/BETA(k) for
C k = 1,2,...,N.
C If DICO = 'C' and JOBB = 'G', the elements of BETA are
C set to 1.
C
C S (output) DOUBLE PRECISION array, dimension (LDS,*)
C The leading 2N-by-2N part of this array contains the
C ordered real Schur form S of the first matrix in the
C reduced matrix pencil associated to the optimal problem,
C or of the corresponding Hamiltonian matrix, if DICO = 'C'
C and JOBB = 'G'. That is,
C
C (S S )
C ( 11 12)
C S = ( ),
C (0 S )
C ( 22)
C
C where S , S and S are N-by-N matrices.
C 11 12 22
C Array S must have 2*N+M columns if JOBB = 'B', and 2*N
C columns, otherwise.
C
C LDS INTEGER
C The leading dimension of array S.
C LDS >= MAX(1,2*N+M) if JOBB = 'B',
C LDS >= MAX(1,2*N) if JOBB = 'G'.
C
C T (output) DOUBLE PRECISION array, dimension (LDT,2*N)
C If DICO = 'D' or JOBB = 'B', the leading 2N-by-2N part of
C this array contains the ordered upper triangular form T of
C the second matrix in the reduced matrix pencil associated
C to the optimal problem. That is,
C
C (T T )
C ( 11 12)
C T = ( ),
C (0 T )
C ( 22)
C
C where T , T and T are N-by-N matrices.
C 11 12 22
C If DICO = 'C' and JOBB = 'G' this array is not referenced.
C
C LDT INTEGER
C The leading dimension of array T.
C LDT >= MAX(1,2*N+M) if JOBB = 'B',
C LDT >= MAX(1,2*N) if JOBB = 'G' and DICO = 'D',
C LDT >= 1 if JOBB = 'G' and DICO = 'C'.
C
C U (output) DOUBLE PRECISION array, dimension (LDU,2*N)
C The leading 2N-by-2N part of this array contains the right
C transformation matrix U which reduces the 2N-by-2N matrix
C pencil to the ordered generalized real Schur form (S,T),
C or the Hamiltonian matrix to the ordered real Schur
C form S, if DICO = 'C' and JOBB = 'G'. That is,
C
C (U U )
C ( 11 12)
C U = ( ),
C (U U )
C ( 21 22)
C
C where U , U , U and U are N-by-N matrices.
C 11 12 21 22
C
C LDU INTEGER
C The leading dimension of array U. LDU >= MAX(1,2*N).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used to test for near singularity of
C the original matrix pencil, specifically of the triangular
C factor obtained during the reduction process. If the user
C sets TOL > 0, then the given value of TOL is used as a
C lower bound for the reciprocal condition number of that
C matrix; a matrix whose estimated condition number is less
C than 1/TOL is considered to be nonsingular. If the user
C sets TOL <= 0, then a default tolerance, defined by
C TOLDEF = EPS, is used instead, where EPS is the machine
C precision (see LAPACK Library routine DLAMCH).
C This parameter is not referenced if JOBB = 'G'.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK >= MAX(1,M,2*N) if JOBB = 'B',
C LIWORK >= MAX(1,2*N) if JOBB = 'G'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK. If JOBB = 'B' and N > 0, DWORK(2) returns the
C reciprocal of the condition number of the M-by-M lower
C triangular matrix obtained after compressing the matrix
C pencil of order 2N+M to obtain a pencil of order 2N.
C If INFO = 0 or INFO = 6, DWORK(3) returns the scaling
C factor used internally, which should multiply the
C submatrix Y2 to recover X from the first N columns of U
C (see METHOD).
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX(3,6*N), if JOBB = 'G',
C DICO = 'C';
C LDWORK >= MAX(7*(2*N+1)+16,16*N), if JOBB = 'G',
C DICO = 'D';
C LDWORK >= MAX(7*(2*N+1)+16,16*N,2*N+M,3*M), if JOBB = 'B'.
C For optimum performance LDWORK should be larger.
C
C BWORK LOGICAL array, dimension (2*N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the computed extended matrix pencil is singular,
C possibly due to rounding errors;
C = 2: if the QZ (or QR) algorithm failed;
C = 3: if reordering of the (generalized) eigenvalues
C failed;
C = 4: if after reordering, roundoff changed values of
C some complex eigenvalues so that leading eigenvalues
C in the (generalized) Schur form no longer satisfy
C the stability condition; this could also be caused
C due to scaling;
C = 5: if the computed dimension of the solution does not
C equal N;
C = 6: if a singular matrix was encountered during the
C computation of the solution matrix X.
C
C METHOD
C
C The routine uses a variant of the method of deflating subspaces
C proposed by van Dooren [1]. See also [2], [3].
C It is assumed that (A,B) is stabilizable and (C,A) is detectable.
C Under these assumptions the algebraic Riccati equation is known to
C have a unique non-negative definite solution.
C The first step in the method of deflating subspaces is to form the
C extended Hamiltonian matrices, dimension 2N + M given by
C
C discrete-time continuous-time
C
C |A 0 B| |I 0 0| |A 0 B| |I 0 0|
C |Q -I L| - z |0 -A' 0|, |Q A' L| - s |0 -I 0|.
C |L' 0 R| |0 -B' 0| |L' B' R| |0 0 0|
C
C Next, these pencils are compressed to a form (see [1])
C
C lambda x A - B .
C f f
C
C This generalized eigenvalue problem is then solved using the QZ
C algorithm and the stable deflating subspace Ys is determined.
C If [Y1'|Y2']' is a basis for Ys, then the required solution is
C -1
C X = Y2 x Y1 .
C A standard eigenvalue problem is solved using the QR algorithm in
C the continuous-time case when G is given (DICO = 'C', JOBB = 'G').
C
C REFERENCES
C
C [1] Van Dooren, P.
C A Generalized Eigenvalue Approach for Solving Riccati
C Equations.
C SIAM J. Sci. Stat. Comp., 2, pp. 121-135, 1981.
C
C [2] Mehrmann, V.
C The Autonomous Linear Quadratic Control Problem. Theory and
C Numerical Solution.
C Lect. Notes in Control and Information Sciences, vol. 163,
C Springer-Verlag, Berlin, 1991.
C
C [3] Sima, V.
C Algorithms for Linear-Quadratic Optimization.
C Pure and Applied Mathematics: A Series of Monographs and
C Textbooks, vol. 200, Marcel Dekker, Inc., New York, 1996.
C
C NUMERICAL ASPECTS
C
C This routine is particularly suited for systems where the matrix R
C is ill-conditioned. Internal scaling is used.
C
C FURTHER COMMENTS
C
C To obtain a stabilizing solution of the algebraic Riccati
C equations set SORT = 'S'.
C
C The routine can also compute the anti-stabilizing solutions of
C the algebraic Riccati equations, by specifying SORT = 'U'.
C
C CONTRIBUTOR
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C Supersedes Release 2.0 routine SB02CD by T.G.J. Beelen, Philips,
C Eindhoven, Holland.
C
C REVISIONS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, May 1999, June 2002,
C December 2002, January 2005.
C
C KEYWORDS
C
C Algebraic Riccati equation, closed loop system, continuous-time
C system, discrete-time system, optimal regulator, Schur form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE, THREE
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0,
$ THREE = 3.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, JOBB, JOBL, SORT, UPLO
INTEGER INFO, LDA, LDB, LDL, LDQ, LDR, LDS, LDT, LDU,
$ LDWORK, LDX, M, N, P
DOUBLE PRECISION RCOND, TOL
C .. Array Arguments ..
LOGICAL BWORK(*)
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), ALFAI(*), ALFAR(*), B(LDB,*), BETA(*),
$ DWORK(*), L(LDL,*), Q(LDQ,*), R(LDR,*),
$ S(LDS,*), T(LDT,*), U(LDU,*), X(LDX,*)
C .. Local Scalars ..
CHARACTER QTYPE, RTYPE
LOGICAL DISCR, LFACB, LFACN, LFACQ, LFACR, LJOBB, LJOBL,
$ LJOBLN, LSCAL, LSCL, LSORT, LUPLO
INTEGER I, INFO1, J, LDW, MP, NDIM, NN, NNM, NP, NP1,
$ WRKOPT
DOUBLE PRECISION QSCAL, RCONDL, RNORM, RSCAL, SCALE, UNORM
C .. Local Arrays ..
DOUBLE PRECISION DUM(1)
C .. External Functions ..
LOGICAL LSAME, SB02MR, SB02MV, SB02OU, SB02OV, SB02OW
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY, LSAME, SB02MR, SB02MV,
$ SB02OU, SB02OV, SB02OW
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGECON, DGEES, DGETRF, DGETRS,
$ DGGES, DLACPY, DLASCL, DLASET, DSCAL, DSWAP,
$ SB02OY, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN, SQRT
C .. Executable Statements ..
C
INFO = 0
DISCR = LSAME( DICO, 'D' )
LJOBB = LSAME( JOBB, 'B' )
LFACN = LSAME( FACT, 'N' )
LFACQ = LSAME( FACT, 'C' )
LFACR = LSAME( FACT, 'D' )
LFACB = LSAME( FACT, 'B' )
LUPLO = LSAME( UPLO, 'U' )
LSORT = LSAME( SORT, 'S' )
C
NN = 2*N
IF ( LJOBB ) THEN
LJOBL = LSAME( JOBL, 'Z' )
LJOBLN = LSAME( JOBL, 'N' )
NNM = NN + M
LDW = MAX( NNM, 3*M )
ELSE
NNM = NN
LDW = 1
END IF
NP1 = N + 1
C
C Test the input scalar arguments.
C
IF( .NOT.DISCR .AND. .NOT.LSAME( DICO, 'C' ) ) THEN
INFO = -1
ELSE IF( .NOT.LJOBB .AND. .NOT.LSAME( JOBB, 'G' ) ) THEN
INFO = -2
ELSE IF( .NOT.LFACQ .AND. .NOT.LFACR .AND. .NOT.LFACB
$ .AND. .NOT.LFACN ) THEN
INFO = -3
ELSE IF( .NOT.LJOBB .OR. LFACN ) THEN
IF( .NOT.LUPLO .AND. .NOT.LSAME( UPLO, 'L' ) )
$ INFO = -4
END IF
IF( INFO.EQ.0 .AND. LJOBB ) THEN
IF( .NOT.LJOBL .AND. .NOT.LJOBLN )
$ INFO = -5
END IF
IF( INFO.EQ.0 ) THEN
IF( .NOT.LSORT .AND. .NOT.LSAME( SORT, 'U' ) ) THEN
INFO = -6
ELSE IF( N.LT.0 ) THEN
INFO = -7
ELSE IF( LJOBB ) THEN
IF( M.LT.0 )
$ INFO = -8
END IF
END IF
IF( INFO.EQ.0 .AND. .NOT.LFACN ) THEN
IF( P.LT.0 )
$ INFO = -9
END IF
IF( INFO.EQ.0 ) THEN
IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -11
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -13
ELSE IF( ( ( LFACN.OR.LFACR ) .AND. LDQ.LT.MAX( 1, N ) ) .OR.
$ ( ( LFACQ.OR.LFACB ) .AND. LDQ.LT.MAX( 1, P ) ) ) THEN
INFO = -15
ELSE IF( LDR.LT.1 ) THEN
INFO = -17
ELSE IF( LDL.LT.1 ) THEN
INFO = -19
ELSE IF( LJOBB ) THEN
IF ( ( LFACN.OR.LFACQ ) .AND. LDR.LT.M .OR.
$ ( LFACR.OR.LFACB ) .AND. LDR.LT.P ) THEN
INFO = -17
ELSE IF( LJOBLN .AND. LDL.LT.N ) THEN
INFO = -19
END IF
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -22
ELSE IF( LDS.LT.MAX( 1, NNM ) ) THEN
INFO = -27
ELSE IF( LDT.LT.1 ) THEN
INFO = -29
ELSE IF( LDU.LT.MAX( 1, NN ) ) THEN
INFO = -31
ELSE IF( LDWORK.LT.MAX( 3, 6*N ) ) THEN
INFO = -35
ELSE IF( DISCR .OR. LJOBB ) THEN
IF( LDT.LT.NNM ) THEN
INFO = -29
ELSE IF( LDWORK.LT.MAX( 14*N + 23, 16*N, LDW ) ) THEN
INFO = -35
END IF
END IF
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB02OD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
RCOND = ONE
DWORK(1) = THREE
DWORK(3) = ONE
RETURN
END IF
C
C Always scale the matrix pencil.
C
LSCAL = .TRUE.
C
C Start computations.
C
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
IF ( LSCAL .AND. LJOBB ) THEN
C
C Scale the matrices Q, R, and L so that
C norm(Q) + norm(R) + norm(L) = 1,
C using the 1-norm. If Q and/or R are factored, the norms of
C the factors are used.
C Workspace: need max(N,M), if FACT = 'N';
C N, if FACT = 'D';
C M, if FACT = 'C'.
C
IF ( LFACN .OR. LFACR ) THEN
SCALE = DLANSY( '1-norm', UPLO, N, Q, LDQ, DWORK )
QTYPE = UPLO
NP = N
ELSE
SCALE = DLANGE( '1-norm', P, N, Q, LDQ, DWORK )
QTYPE = 'G'
NP = P
END IF
C
IF ( LFACN .OR. LFACQ ) THEN
RNORM = DLANSY( '1-norm', UPLO, M, R, LDR, DWORK )
RTYPE = UPLO
MP = M
ELSE
RNORM = DLANGE( '1-norm', P, M, R, LDR, DWORK )
RTYPE = 'G'
MP = P
END IF
SCALE = SCALE + RNORM
C
IF ( LJOBLN )
$ SCALE = SCALE + DLANGE( '1-norm', N, M, L, LDL, DWORK )
IF ( SCALE.EQ.ZERO )
$ SCALE = ONE
C
IF ( LFACN .OR. LFACR ) THEN
QSCAL = SCALE
ELSE
QSCAL = SQRT( SCALE )
END IF
C
IF ( LFACN .OR. LFACQ ) THEN
RSCAL = SCALE
ELSE
RSCAL = SQRT( SCALE )
END IF
C
CALL DLASCL( QTYPE, 0, 0, QSCAL, ONE, NP, N, Q, LDQ, INFO1 )
CALL DLASCL( RTYPE, 0, 0, RSCAL, ONE, MP, M, R, LDR, INFO1 )
IF ( LJOBLN )
$ CALL DLASCL( 'G', 0, 0, SCALE, ONE, N, M, L, LDL, INFO1 )
END IF
C
C Construct the extended matrix pair.
C
C Workspace: need 1, if JOBB = 'G',
C max(1,2*N+M,3*M), if JOBB = 'B';
C prefer larger.
C
CALL SB02OY( 'Optimal control', DICO, JOBB, FACT, UPLO, JOBL,
$ 'Identity E', N, M, P, A, LDA, B, LDB, Q, LDQ, R,
$ LDR, L, LDL, U, 1, S, LDS, T, LDT, TOL, IWORK, DWORK,
$ LDWORK, INFO )
C
IF ( LSCAL .AND. LJOBB ) THEN
C
C Undo scaling of the data arrays.
C
CALL DLASCL( QTYPE, 0, 0, ONE, QSCAL, NP, N, Q, LDQ, INFO1 )
CALL DLASCL( RTYPE, 0, 0, ONE, RSCAL, MP, M, R, LDR, INFO1 )
IF ( LJOBLN )
$ CALL DLASCL( 'G', 0, 0, ONE, SCALE, N, M, L, LDL, INFO1 )
END IF
C
IF ( INFO.NE.0 )
$ RETURN
WRKOPT = DWORK(1)
IF ( LJOBB ) RCONDL = DWORK(2)
C
IF ( LSCAL .AND. .NOT.LJOBB ) THEN
C
C This part of the code is used when G is given (JOBB = 'G').
C A standard eigenproblem is solved in the continuous-time case.
C Scale the Hamiltonian matrix S, if DICO = 'C', or the
C symplectic pencil (S,T), if DICO = 'D', using the square roots
C of the norms of the matrices Q and G.
C Workspace: need N.
C
IF ( LFACN .OR. LFACR ) THEN
SCALE = SQRT( DLANSY( '1-norm', UPLO, N, Q, LDQ, DWORK ) )
ELSE
SCALE = DLANGE( '1-norm', P, N, Q, LDQ, DWORK )
END IF
RNORM = SQRT( DLANSY( '1-norm', UPLO, N, B, LDB, DWORK ) )
C
LSCL = MIN( SCALE, RNORM ).GT.ZERO .AND. SCALE.NE.RNORM
C
IF( LSCL ) THEN
IF( DISCR ) THEN
CALL DLASCL( 'G', 0, 0, SCALE, RNORM, N, N, S(NP1,1),
$ LDS, INFO1 )
CALL DLASCL( 'G', 0, 0, RNORM, SCALE, N, N, T(1,NP1),
$ LDT, INFO1 )
ELSE
CALL DLASCL( 'G', 0, 0, SCALE, -RNORM, N, N, S(NP1,1),
$ LDS, INFO1 )
CALL DLASCL( 'G', 0, 0, RNORM, SCALE, N, N, S(1,NP1),
$ LDS, INFO1 )
CALL DLASCL( 'G', 0, 0, ONE, -ONE, N, N, S(NP1,NP1),
$ LDS, INFO1 )
END IF
ELSE
IF( .NOT.DISCR ) THEN
CALL DLASCL( 'G', 0, 0, ONE, -ONE, N, NN, S(NP1,1), LDS,
$ INFO1 )
END IF
END IF
ELSE
LSCL = .FALSE.
END IF
C
C Workspace: need max(7*(2*N+1)+16,16*N),
C if JOBB = 'B' or DICO = 'D';
C 6*N, if JOBB = 'G' and DICO = 'C';
C prefer larger.
C
IF ( DISCR ) THEN
IF ( LSORT ) THEN
C
C The natural tendency of the QZ algorithm to get the largest
C eigenvalues in the leading part of the matrix pair is
C exploited, by computing the unstable eigenvalues of the
C permuted matrix pair.
C
CALL DGGES( 'No vectors', 'Vectors', 'Sort', SB02OV, NN, T,
$ LDT, S, LDS, NDIM, ALFAR, ALFAI, BETA, U, LDU,
$ U, LDU, DWORK, LDWORK, BWORK, INFO1 )
CALL DSWAP( N, ALFAR(NP1), 1, ALFAR, 1 )
CALL DSWAP( N, ALFAI(NP1), 1, ALFAI, 1 )
CALL DSWAP( N, BETA (NP1), 1, BETA, 1 )
ELSE
CALL DGGES( 'No vectors', 'Vectors', 'Sort', SB02OV, NN, S,
$ LDS, T, LDT, NDIM, ALFAR, ALFAI, BETA, U, LDU,
$ U, LDU, DWORK, LDWORK, BWORK, INFO1 )
END IF
ELSE
IF ( LJOBB ) THEN
IF ( LSORT ) THEN
CALL DGGES( 'No vectors', 'Vectors', 'Sort', SB02OW, NN,
$ S, LDS, T, LDT, NDIM, ALFAR, ALFAI, BETA, U,
$ LDU, U, LDU, DWORK, LDWORK, BWORK, INFO1 )
ELSE
CALL DGGES( 'No vectors', 'Vectors', 'Sort', SB02OU, NN,
$ S, LDS, T, LDT, NDIM, ALFAR, ALFAI, BETA, U,
$ LDU, U, LDU, DWORK, LDWORK, BWORK, INFO1 )
END IF
ELSE
IF ( LSORT ) THEN
CALL DGEES( 'Vectors', 'Sort', SB02MV, NN, S, LDS, NDIM,
$ ALFAR, ALFAI, U, LDU, DWORK, LDWORK, BWORK,
$ INFO1 )
ELSE
CALL DGEES( 'Vectors', 'Sort', SB02MR, NN, S, LDS, NDIM,
$ ALFAR, ALFAI, U, LDU, DWORK, LDWORK, BWORK,
$ INFO1 )
END IF
DUM(1) = ONE
CALL DCOPY( NN, DUM, 0, BETA, 1 )
END IF
END IF
IF ( INFO1.GT.0 .AND. INFO1.LE.NN+1 ) THEN
INFO = 2
ELSE IF ( INFO1.EQ.NN+2 ) THEN
INFO = 4
ELSE IF ( INFO1.EQ.NN+3 ) THEN
INFO = 3
ELSE IF ( NDIM.NE.N ) THEN
INFO = 5
END IF
IF ( INFO.NE.0 )
$ RETURN
WRKOPT = MAX( WRKOPT, INT( DWORK(1) ) )
C
C Select submatrices U1 and U2 out of the array U which define the
C solution X = U2 x inv(U1).
C Since X = X' we may obtain X as the solution of the system of
C linear equations U1' x X = U2', where
C U1 = U(1:n, 1:n),
C U2 = U(n+1:2n, 1:n).
C Use the (2,1) block of S as a workspace for factoring U1.
C
DO 20 J = 1, N
CALL DCOPY( N, U(NP1,J), 1, X(J,1), LDX )
20 CONTINUE
C
CALL DLACPY( 'Full', N, N, U, LDU, S(NP1,1), LDS )
C
C Check if U1 is singular.
C
UNORM = DLANGE( '1-norm', N, N, S(NP1,1), LDS, DWORK )
C
C Solve the system U1' x X = U2'.
C
CALL DGETRF( N, N, S(NP1,1), LDS, IWORK, INFO1 )
IF ( INFO1.NE.0 ) THEN
INFO = 6
DWORK(3) = ONE
IF ( LSCAL ) THEN
IF ( LJOBB ) THEN
DWORK(3) = SCALE
ELSE IF ( LSCL ) THEN
DWORK(3) = SCALE / RNORM
END IF
END IF
RETURN
ELSE
C
C Estimate the reciprocal condition of U1.
C Workspace: need 3*N.
C
CALL DGECON( '1-norm', N, S(NP1,1), LDS, UNORM, RCOND, DWORK,
$ IWORK(NP1), INFO )
C
IF ( RCOND.LT.DLAMCH( 'Epsilon' ) ) THEN
C
C Nearly singular matrix. Set INFO for error return.
C
INFO = 6
RETURN
END IF
WRKOPT = MAX( WRKOPT, 3*N )
CALL DGETRS( 'Transpose', N, N, S(NP1,1), LDS, IWORK, X, LDX,
$ INFO1 )
C
C Set S(2,1) to zero.
C
CALL DLASET( 'Full', N, N, ZERO, ZERO, S(NP1,1), LDS )
C
IF ( LSCAL ) THEN
C
C Prepare to undo scaling for the solution X.
C
IF ( .NOT.LJOBB ) THEN
IF ( LSCL ) THEN
SCALE = SCALE / RNORM
ELSE
SCALE = ONE
END IF
END IF
DWORK(3) = SCALE
SCALE = HALF*SCALE
ELSE
DWORK(3) = ONE
SCALE = HALF
END IF
C
C Make sure the solution matrix X is symmetric.
C
DO 40 I = 1, N
CALL DAXPY( N-I+1, ONE, X(I,I), LDX, X(I,I), 1 )
CALL DSCAL( N-I+1, SCALE, X(I,I), 1 )
CALL DCOPY( N-I+1, X(I,I), 1, X(I,I), LDX )
40 CONTINUE
END IF
C
DWORK(1) = WRKOPT
IF ( LJOBB ) DWORK(2) = RCONDL
C
RETURN
C *** Last line of SB02OD ***
END
|