1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
|
SUBROUTINE SB02OY( TYPE, DICO, JOBB, FACT, UPLO, JOBL, JOBE, N, M,
$ P, A, LDA, B, LDB, Q, LDQ, R, LDR, L, LDL, E,
$ LDE, AF, LDAF, BF, LDBF, TOL, IWORK, DWORK,
$ LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To construct the extended matrix pairs for the computation of the
C solution of the algebraic matrix Riccati equations arising in the
C problems of optimal control, both discrete and continuous-time,
C and of spectral factorization, both discrete and continuous-time.
C These matrix pairs, of dimension 2N + M, are given by
C
C discrete-time continuous-time
C
C |A 0 B| |E 0 0| |A 0 B| |E 0 0|
C |Q -E' L| - z |0 -A' 0|, |Q A' L| - s |0 -E' 0|. (1)
C |L' 0 R| |0 -B' 0| |L' B' R| |0 0 0|
C
C After construction, these pencils are compressed to a form
C (see [1])
C
C lambda x A - B ,
C f f
C
C where A and B are 2N-by-2N matrices.
C f f
C -1
C Optionally, matrix G = BR B' may be given instead of B and R;
C then, for L = 0, 2N-by-2N matrix pairs are directly constructed as
C
C discrete-time continuous-time
C
C |A 0 | |E G | |A -G | |E 0 |
C | | - z | |, | | - s | |. (2)
C |Q -E'| |0 -A'| |Q A'| |0 -E'|
C
C Similar pairs are obtained for non-zero L, if SLICOT Library
C routine SB02MT is called before SB02OY.
C Other options include the case with E identity matrix, L a zero
C matrix, or Q and/or R given in a factored form, Q = C'C, R = D'D.
C For spectral factorization problems, there are minor differences
C (e.g., B is replaced by C').
C The second matrix in (2) is not constructed in the continuous-time
C case if E is specified as being an identity matrix.
C
C ARGUMENTS
C
C Mode Parameters
C
C TYPE CHARACTER*1
C Specifies the type of problem to be addressed as follows:
C = 'O': Optimal control problem;
C = 'S': Spectral factorization problem.
C
C DICO CHARACTER*1
C Specifies the type of linear system considered as follows:
C = 'C': Continuous-time system;
C = 'D': Discrete-time system.
C
C JOBB CHARACTER*1
C Specifies whether or not the matrix G is given, instead
C of the matrices B and R, as follows:
C = 'B': B and R are given;
C = 'G': G is given.
C For JOBB = 'G', a 2N-by-2N matrix pair is directly
C obtained assuming L = 0 (see the description of JOBL).
C
C FACT CHARACTER*1
C Specifies whether or not the matrices Q and/or R (if
C JOBB = 'B') are factored, as follows:
C = 'N': Not factored, Q and R are given;
C = 'C': C is given, and Q = C'C;
C = 'D': D is given, and R = D'D (if TYPE = 'O'), or
C R = D + D' (if TYPE = 'S');
C = 'B': Both factors C and D are given, Q = C'C, R = D'D
C (or R = D + D').
C
C UPLO CHARACTER*1
C If JOBB = 'G', or FACT = 'N', specifies which triangle of
C the matrices G and Q (if FACT = 'N'), or Q and R (if
C JOBB = 'B'), is stored, as follows:
C = 'U': Upper triangle is stored;
C = 'L': Lower triangle is stored.
C
C JOBL CHARACTER*1
C Specifies whether or not the matrix L is zero, as follows:
C = 'Z': L is zero;
C = 'N': L is nonzero.
C JOBL is not used if JOBB = 'G' and JOBL = 'Z' is assumed.
C Using SLICOT Library routine SB02MT to compute the
C corresponding A and Q in this case, before calling SB02OY,
C enables to obtain 2N-by-2N matrix pairs directly.
C
C JOBE CHARACTER*1
C Specifies whether or not the matrix E is identity, as
C follows:
C = 'I': E is the identity matrix;
C = 'N': E is a general matrix.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, Q, and E, and the number
C of rows of the matrices B and L. N >= 0.
C
C M (input) INTEGER
C If JOBB = 'B', M is the order of the matrix R, and the
C number of columns of the matrix B. M >= 0.
C M is not used if JOBB = 'G'.
C
C P (input) INTEGER
C If FACT = 'C' or 'D' or 'B', or if TYPE = 'S', P is the
C number of rows of the matrix C and/or D, respectively.
C P >= 0, and if JOBB = 'B' and TYPE = 'S', then P = M.
C Otherwise, P is not used.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C state matrix A of the system.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,*)
C If JOBB = 'B', the leading N-by-M part of this array must
C contain the input matrix B of the system.
C If JOBB = 'G', the leading N-by-N upper triangular part
C (if UPLO = 'U') or lower triangular part (if UPLO = 'L')
C of this array must contain the upper triangular part or
C lower triangular part, respectively, of the matrix
C -1
C G = BR B'. The stricly lower triangular part (if
C UPLO = 'U') or stricly upper triangular part (if
C UPLO = 'L') is not referenced.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C Q (input) DOUBLE PRECISION array, dimension (LDQ,N)
C If FACT = 'N' or 'D', the leading N-by-N upper triangular
C part (if UPLO = 'U') or lower triangular part (if UPLO =
C 'L') of this array must contain the upper triangular part
C or lower triangular part, respectively, of the symmetric
C output weighting matrix Q. The stricly lower triangular
C part (if UPLO = 'U') or stricly upper triangular part (if
C UPLO = 'L') is not referenced.
C If FACT = 'C' or 'B', the leading P-by-N part of this
C array must contain the output matrix C of the system.
C
C LDQ INTEGER
C The leading dimension of array Q.
C LDQ >= MAX(1,N) if FACT = 'N' or 'D',
C LDQ >= MAX(1,P) if FACT = 'C' or 'B'.
C
C R (input) DOUBLE PRECISION array, dimension (LDR,M)
C If FACT = 'N' or 'C', the leading M-by-M upper triangular
C part (if UPLO = 'U') or lower triangular part (if UPLO =
C 'L') of this array must contain the upper triangular part
C or lower triangular part, respectively, of the symmetric
C input weighting matrix R. The stricly lower triangular
C part (if UPLO = 'U') or stricly upper triangular part (if
C UPLO = 'L') is not referenced.
C If FACT = 'D' or 'B', the leading P-by-M part of this
C array must contain the direct transmission matrix D of the
C system.
C If JOBB = 'G', this array is not referenced.
C
C LDR INTEGER
C The leading dimension of array R.
C LDR >= MAX(1,M) if JOBB = 'B' and FACT = 'N' or 'C';
C LDR >= MAX(1,P) if JOBB = 'B' and FACT = 'D' or 'B';
C LDR >= 1 if JOBB = 'G'.
C
C L (input) DOUBLE PRECISION array, dimension (LDL,M)
C If JOBL = 'N' (and JOBB = 'B'), the leading N-by-M part of
C this array must contain the cross weighting matrix L.
C If JOBL = 'Z' or JOBB = 'G', this array is not referenced.
C
C LDL INTEGER
C The leading dimension of array L.
C LDL >= MAX(1,N) if JOBL = 'N';
C LDL >= 1 if JOBL = 'Z' or JOBB = 'G'.
C
C E (input) DOUBLE PRECISION array, dimension (LDE,N)
C If JOBE = 'N', the leading N-by-N part of this array must
C contain the matrix E of the descriptor system.
C If JOBE = 'I', E is taken as identity and this array is
C not referenced.
C
C LDE INTEGER
C The leading dimension of array E.
C LDE >= MAX(1,N) if JOBE = 'N';
C LDE >= 1 if JOBE = 'I'.
C
C AF (output) DOUBLE PRECISION array, dimension (LDAF,*)
C The leading 2N-by-2N part of this array contains the
C matrix A in the matrix pencil.
C f
C Array AF must have 2*N+M columns if JOBB = 'B', and 2*N
C columns, otherwise.
C
C LDAF INTEGER
C The leading dimension of array AF.
C LDAF >= MAX(1,2*N+M) if JOBB = 'B',
C LDAF >= MAX(1,2*N) if JOBB = 'G'.
C
C BF (output) DOUBLE PRECISION array, dimension (LDBF,2*N)
C If DICO = 'D' or JOBB = 'B' or JOBE = 'N', the leading
C 2N-by-2N part of this array contains the matrix B in the
C f
C matrix pencil.
C The last M zero columns are never constructed.
C If DICO = 'C' and JOBB = 'G' and JOBE = 'I', this array
C is not referenced.
C
C LDBF INTEGER
C The leading dimension of array BF.
C LDBF >= MAX(1,2*N+M) if JOBB = 'B',
C LDBF >= MAX(1,2*N) if JOBB = 'G' and ( DICO = 'D' or
C JOBE = 'N' ),
C LDBF >= 1 if JOBB = 'G' and ( DICO = 'C' and
C JOBE = 'I' ).
C
C Tolerances
C
C TOL DOUBLE PRECISION
C The tolerance to be used to test for near singularity of
C the original matrix pencil, specifically of the triangular
C factor obtained during the reduction process. If the user
C sets TOL > 0, then the given value of TOL is used as a
C lower bound for the reciprocal condition number of that
C matrix; a matrix whose estimated condition number is less
C than 1/TOL is considered to be nonsingular. If the user
C sets TOL <= 0, then a default tolerance, defined by
C TOLDEF = EPS, is used instead, where EPS is the machine
C precision (see LAPACK Library routine DLAMCH).
C This parameter is not referenced if JOBB = 'G'.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK >= M if JOBB = 'B',
C LIWORK >= 1 if JOBB = 'G'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) returns the optimal value
C of LDWORK. If JOBB = 'B', DWORK(2) returns the reciprocal
C of the condition number of the M-by-M lower triangular
C matrix obtained after compression.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 1 if JOBB = 'G',
C LDWORK >= MAX(1,2*N + M,3*M) if JOBB = 'B'.
C For optimum performance LDWORK should be larger.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the computed extended matrix pencil is singular,
C possibly due to rounding errors.
C
C METHOD
C
C The extended matrix pairs are constructed, taking various options
C into account. If JOBB = 'B', the problem order is reduced from
C 2N+M to 2N (see [1]).
C
C REFERENCES
C
C [1] Van Dooren, P.
C A Generalized Eigenvalue Approach for Solving Riccati
C Equations.
C SIAM J. Sci. Stat. Comp., 2, pp. 121-135, 1981.
C
C [2] Mehrmann, V.
C The Autonomous Linear Quadratic Control Problem. Theory and
C Numerical Solution.
C Lect. Notes in Control and Information Sciences, vol. 163,
C Springer-Verlag, Berlin, 1991.
C
C [3] Sima, V.
C Algorithms for Linear-Quadratic Optimization.
C Pure and Applied Mathematics: A Series of Monographs and
C Textbooks, vol. 200, Marcel Dekker, Inc., New York, 1996.
C
C NUMERICAL ASPECTS
C
C The algorithm is backward stable.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C Supersedes Release 2.0 routine SB02CY by T.G.J. Beelen, Philips,
C Eindhoven, Holland, M. Vanbegin, and P. Van Dooren, Philips
C Research Laboratory, Brussels, Belgium.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Dec. 2002.
C
C KEYWORDS
C
C Algebraic Riccati equation, closed loop system, continuous-time
C system, discrete-time system, optimal regulator, Schur form.
C
C ******************************************************************
C
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, JOBB, JOBE, JOBL, TYPE, UPLO
INTEGER INFO, LDA, LDAF, LDB, LDBF, LDE, LDL, LDQ, LDR,
$ LDWORK, M, N, P
DOUBLE PRECISION TOL
C .. Array Arguments ..
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), AF(LDAF,*), B(LDB,*), BF(LDBF,*),
$ DWORK(*), E(LDE,*), L(LDL,*), Q(LDQ,*), R(LDR,*)
C .. Local Scalars ..
LOGICAL DISCR, LFACB, LFACN, LFACQ, LFACR, LJOBB, LJOBE,
$ LJOBL, LUPLO, OPTC
INTEGER I, ITAU, J, JWORK, N2, N2P1, NM, NNM, NP1,
$ WRKOPT
DOUBLE PRECISION RCOND, TOLDEF
C .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH, LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEQLF, DLACPY, DLASET, DORMQL, DSYRK,
$ DTRCON, XERBLA
C .. Intrinsic Functions ..
INTRINSIC INT, MAX
C .. Executable Statements ..
C
INFO = 0
OPTC = LSAME( TYPE, 'O' )
DISCR = LSAME( DICO, 'D' )
LJOBB = LSAME( JOBB, 'B' )
LFACN = LSAME( FACT, 'N' )
LFACQ = LSAME( FACT, 'C' )
LFACR = LSAME( FACT, 'D' )
LFACB = LSAME( FACT, 'B' )
LUPLO = LSAME( UPLO, 'U' )
LJOBE = LSAME( JOBE, 'I' )
N2 = N + N
IF ( LJOBB ) THEN
LJOBL = LSAME( JOBL, 'Z' )
NM = N + M
NNM = N2 + M
ELSE
NM = N
NNM = N2
END IF
NP1 = N + 1
N2P1 = N2 + 1
C
C Test the input scalar arguments.
C
IF( .NOT.OPTC .AND. .NOT.LSAME( TYPE, 'S' ) ) THEN
INFO = -1
ELSE IF( .NOT.DISCR .AND. .NOT.LSAME( DICO, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.LJOBB .AND. .NOT.LSAME( JOBB, 'G' ) ) THEN
INFO = -3
ELSE IF( .NOT.LFACQ .AND. .NOT.LFACR .AND. .NOT.LFACB
$ .AND. .NOT.LFACN ) THEN
INFO = -4
ELSE IF( .NOT.LJOBB .OR. LFACN ) THEN
IF( .NOT.LUPLO .AND. .NOT.LSAME( UPLO, 'L' ) )
$ INFO = -5
ELSE IF( LJOBB ) THEN
IF( .NOT.LJOBL .AND. .NOT.LSAME( JOBL, 'N' ) )
$ INFO = -6
ELSE IF( .NOT.LJOBE .AND. .NOT.LSAME( JOBE, 'N' ) ) THEN
INFO = -7
ELSE IF( N.LT.0 ) THEN
INFO = -8
ELSE IF( LJOBB ) THEN
IF( M.LT.0 )
$ INFO = -9
ELSE IF( .NOT.LFACN .OR. .NOT.OPTC ) THEN
IF( P.LT.0 ) THEN
INFO = -10
ELSE IF( LJOBB ) THEN
IF( .NOT.OPTC .AND. P.NE.M )
$ INFO = -10
END IF
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( ( ( LFACN.OR.LFACR ) .AND. LDQ.LT.MAX( 1, N ) ) .OR.
$ ( ( LFACQ.OR.LFACB ) .AND. LDQ.LT.MAX( 1, P ) ) ) THEN
INFO = -16
ELSE IF( LDR.LT.1 ) THEN
INFO = -18
ELSE IF( LJOBB ) THEN
IF ( ( LFACN.OR.LFACQ ) .AND. LDR.LT.M .OR.
$ ( LFACR.OR.LFACB ) .AND. LDR.LT.P ) THEN
INFO = -18
ELSE IF( ( .NOT.LJOBL .AND. LDL.LT.MAX( 1, N ) ) .OR.
$ ( LJOBL .AND. LDL.LT.1 ) ) THEN
INFO = -20
END IF
END IF
IF( ( .NOT.LJOBE .AND. LDE.LT.MAX( 1, N ) ) .OR.
$ ( LJOBE .AND. LDE.LT.1 ) ) THEN
INFO = -22
ELSE IF( LDAF.LT.MAX( 1, NNM ) ) THEN
INFO = -24
ELSE IF( ( ( LJOBB .OR. DISCR .OR. .NOT.LJOBE ) .AND.
$ LDBF.LT.NNM ) .OR. ( LDBF.LT.1 ) ) THEN
INFO = -26
ELSE IF( ( LJOBB .AND. LDWORK.LT.MAX( NNM, 3*M ) ) .OR.
$ LDWORK.LT.1 ) THEN
INFO = -30
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB02OY', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
DWORK(1) = ONE
IF ( N.EQ.0 )
$ RETURN
C
C Construct the extended matrices in AF and BF, by block-columns.
C
CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF )
C
IF ( .NOT.LFACQ .AND. .NOT.LFACB ) THEN
CALL DLACPY( UPLO, N, N, Q, LDQ, AF(NP1,1), LDAF )
IF ( LUPLO ) THEN
C
C Construct the lower triangle of Q.
C
DO 20 J = 1, N - 1
CALL DCOPY( N-J, Q(J,J+1), LDQ, AF(NP1+J,J), 1 )
20 CONTINUE
C
ELSE
C
C Construct the upper triangle of Q.
C
DO 40 J = 2, N
CALL DCOPY( J-1, Q(J,1), LDQ, AF(NP1,J), 1 )
40 CONTINUE
C
END IF
ELSE
CALL DSYRK( 'Upper', 'Transpose', N, P, ONE, Q, LDQ, ZERO,
$ AF(NP1,1), LDAF )
C
DO 60 J = 2, N
CALL DCOPY( J-1, AF(NP1,J), 1, AF(N+J,1), LDAF )
60 CONTINUE
C
END IF
C
IF ( LJOBB ) THEN
IF ( LJOBL ) THEN
CALL DLASET( 'Full', M, N, ZERO, ZERO, AF(N2P1,1), LDAF )
ELSE
C
DO 80 I = 1, N
CALL DCOPY( M, L(I,1), LDL, AF(N2P1,I), 1 )
80 CONTINUE
C
END IF
END IF
C
IF ( DISCR.OR.LJOBB ) THEN
CALL DLASET( 'Full', N, N, ZERO, ZERO, AF(1,NP1), LDAF )
ELSE
IF ( LUPLO ) THEN
C
C Construct (1,2) block of AF using the upper triangle of G.
C
DO 140 J = 1, N
C
DO 100 I = 1, J
AF(I,N+J)= -B(I,J)
100 CONTINUE
C
DO 120 I = J + 1, N
AF(I,N+J)= -B(J,I)
120 CONTINUE
C
140 CONTINUE
C
ELSE
C
C Construct (1,2) block of AF using the lower triangle of G.
C
DO 200 J = 1, N
C
DO 160 I = 1, J - 1
AF(I,N+J)= -B(J,I)
160 CONTINUE
C
DO 180 I = J, N
AF(I,N+J)= -B(I,J)
180 CONTINUE
C
200 CONTINUE
C
END IF
END IF
C
IF ( DISCR ) THEN
IF ( LJOBE ) THEN
CALL DLASET( 'Full', NM, N, ZERO, -ONE, AF(NP1,NP1), LDAF )
ELSE
C
DO 240 J = 1, N
C
DO 220 I = 1, N
AF(N+I,N+J)= -E(J,I)
220 CONTINUE
C
240 CONTINUE
C
IF ( LJOBB )
$ CALL DLASET( 'Full', M, N, ZERO, ZERO, AF(N2P1,NP1),
$ LDAF )
END IF
ELSE
C
DO 280 J = 1, N
C
DO 260 I = 1, N
AF(N+I,N+J)= A(J,I)
260 CONTINUE
C
280 CONTINUE
C
IF ( LJOBB ) THEN
IF ( OPTC ) THEN
C
DO 300 J = 1, N
CALL DCOPY ( M, B(J,1), LDB, AF(N2P1,N+J), 1 )
300 CONTINUE
C
ELSE
CALL DLACPY( 'Full', P, N, Q, LDQ, AF(N2P1,NP1), LDAF )
END IF
END IF
END IF
C
IF ( LJOBB ) THEN
C
IF ( OPTC ) THEN
CALL DLACPY( 'Full', N, M, B, LDB, AF(1,N2P1), LDAF )
ELSE
C
DO 320 I = 1, P
CALL DCOPY( N, Q(I,1), LDQ, AF(1,N2+I), 1 )
320 CONTINUE
C
END IF
C
IF ( LJOBL ) THEN
CALL DLASET( 'Full', N, M, ZERO, ZERO, AF(NP1,N2P1), LDAF )
ELSE
CALL DLACPY( 'Full', N, M, L, LDL, AF(NP1,N2P1), LDAF )
END IF
C
IF ( .NOT.LFACR .AND. .NOT.LFACB ) THEN
CALL DLACPY( UPLO, M, M, R, LDR, AF(N2P1,N2P1), LDAF )
IF ( LUPLO ) THEN
C
C Construct the lower triangle of R.
C
DO 340 J = 1, M - 1
CALL DCOPY( M-J, R(J,J+1), LDR, AF(N2P1+J,N2+J), 1 )
340 CONTINUE
C
ELSE
C
C Construct the upper triangle of R.
C
DO 360 J = 2, M
CALL DCOPY( J-1, R(J,1), LDR, AF(N2P1,N2+J), 1 )
360 CONTINUE
C
END IF
ELSE IF ( OPTC ) THEN
CALL DSYRK( 'Upper', 'Transpose', M, P, ONE, R, LDR, ZERO,
$ AF(N2P1,N2P1), LDAF )
C
DO 380 J = 2, M
CALL DCOPY( J-1, AF(N2P1,N2+J), 1, AF(N2+J,N2P1), LDAF )
380 CONTINUE
C
ELSE
C
DO 420 J = 1, M
C
DO 400 I = 1, P
AF(N2+I,N2+J) = R(I,J) + R(J,I)
400 CONTINUE
C
420 CONTINUE
C
END IF
END IF
C
IF ( .NOT.LJOBB .AND. .NOT.DISCR .AND. LJOBE )
$ RETURN
C
C Construct the first two block columns of BF.
C
IF ( LJOBE ) THEN
CALL DLASET( 'Full', N+NM, N, ZERO, ONE, BF, LDBF )
ELSE
CALL DLACPY( 'Full', N, N, E, LDE, BF, LDBF )
CALL DLASET( 'Full', NM, N, ZERO, ZERO, BF(NP1,1), LDBF )
END IF
C
IF ( .NOT.DISCR.OR.LJOBB ) THEN
CALL DLASET( 'Full', N, N, ZERO, ZERO, BF(1,NP1), LDBF )
ELSE
IF ( LUPLO ) THEN
C
C Construct (1,2) block of BF using the upper triangle of G.
C
DO 480 J = 1, N
C
DO 440 I = 1, J
BF(I,N+J)= B(I,J)
440 CONTINUE
C
DO 460 I = J + 1, N
BF(I,N+J)= B(J,I)
460 CONTINUE
C
480 CONTINUE
C
ELSE
C
C Construct (1,2) block of BF using the lower triangle of G.
C
DO 540 J = 1, N
C
DO 500 I = 1, J - 1
BF(I,N+J)= B(J,I)
500 CONTINUE
C
DO 520 I = J, N
BF(I,N+J)= B(I,J)
520 CONTINUE
C
540 CONTINUE
C
END IF
END IF
C
IF ( DISCR ) THEN
C
DO 580 J = 1, N
C
DO 560 I = 1, N
BF(N+I,N+J)= -A(J,I)
560 CONTINUE
C
580 CONTINUE
C
IF ( LJOBB ) THEN
C
IF ( OPTC ) THEN
C
DO 620 J = 1, N
C
DO 600 I = 1, M
BF(N2+I,N+J)= -B(J,I)
600 CONTINUE
C
620 CONTINUE
C
ELSE
C
DO 660 J = 1, N
C
DO 640 I = 1, P
BF(N2+I,N+J) = -Q(I,J)
640 CONTINUE
C
660 CONTINUE
C
END IF
END IF
C
ELSE
IF ( LJOBE ) THEN
CALL DLASET( 'Full', NM, N, ZERO, -ONE, BF(NP1,NP1), LDBF )
ELSE
C
DO 700 J = 1, N
C
DO 680 I = 1, N
BF(N+I,N+J)= -E(J,I)
680 CONTINUE
C
700 CONTINUE
C
IF ( LJOBB )
$ CALL DLASET( 'Full', M, N, ZERO, ZERO, BF(N2P1,NP1),
$ LDBF )
END IF
END IF
C
IF ( .NOT.LJOBB )
$ RETURN
C
C Compress the pencil lambda x BF - AF, using QL factorization.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
C Workspace: need 2*M; prefer M + M*NB.
C
ITAU = 1
JWORK = ITAU + M
CALL DGEQLF( NNM, M, AF(1,N2P1), LDAF, DWORK(ITAU), DWORK(JWORK),
$ LDWORK-JWORK+1, INFO )
WRKOPT = DWORK(JWORK)
C
C Workspace: need 2*N+M; prefer M + 2*N*NB.
C
CALL DORMQL( 'Left', 'Transpose', NNM, N2, M, AF(1,N2P1), LDAF,
$ DWORK(ITAU), AF, LDAF, DWORK(JWORK), LDWORK-JWORK+1,
$ INFO )
WRKOPT = MAX( WRKOPT, INT( DWORK(JWORK) )+JWORK-1 )
C
CALL DORMQL( 'Left', 'Transpose', NNM, N2, M, AF(1,N2P1), LDAF,
$ DWORK(ITAU), BF, LDBF, DWORK(JWORK), LDWORK-JWORK+1,
$ INFO )
C
C Check the singularity of the L factor in the QL factorization:
C if singular, then the extended matrix pencil is also singular.
C Workspace 3*M.
C
TOLDEF = TOL
IF ( TOLDEF.LE.ZERO )
$ TOLDEF = DLAMCH( 'Epsilon' )
C
CALL DTRCON( '1-norm', 'Lower', 'Non unit', M, AF(N2P1,N2P1),
$ LDAF, RCOND, DWORK, IWORK, INFO )
WRKOPT = MAX( WRKOPT, 3*M )
C
IF ( RCOND.LE.TOLDEF )
$ INFO = 1
C
DWORK(1) = WRKOPT
DWORK(2) = RCOND
C
RETURN
C *** Last line of SB02OY ***
END
|