1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
|
SUBROUTINE SB02RD( JOB, DICO, HINV, TRANA, UPLO, SCAL, SORT, FACT,
$ LYAPUN, N, A, LDA, T, LDT, V, LDV, G, LDG, Q,
$ LDQ, X, LDX, SEP, RCOND, FERR, WR, WI, S, LDS,
$ IWORK, DWORK, LDWORK, BWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To solve for X either the continuous-time algebraic Riccati
C equation
C -1
C Q + op(A)'*X + X*op(A) - X*op(B)*R op(B)'*X = 0, (1)
C
C or the discrete-time algebraic Riccati equation
C -1
C X = op(A)'*X*op(A) - op(A)'*X*op(B)*(R + op(B)'*X*op(B)) *
C op(B)'*X*op(A) + Q, (2)
C
C where op(M) = M or M' (M**T), A, op(B), Q, and R are N-by-N,
C N-by-M, N-by-N, and M-by-M matrices respectively, with Q symmetric
C and R symmetric nonsingular; X is an N-by-N symmetric matrix.
C -1
C The matrix G = op(B)*R *op(B)' must be provided on input, instead
C of B and R, that is, the continuous-time equation
C
C Q + op(A)'*X + X*op(A) - X*G*X = 0, (3)
C
C or the discrete-time equation
C -1
C Q + op(A)'*X*(I_n + G*X) *op(A) - X = 0, (4)
C
C are solved, where G is an N-by-N symmetric matrix. SLICOT Library
C routine SB02MT should be used to compute G, given B and R. SB02MT
C also enables to solve Riccati equations corresponding to optimal
C problems with coupling terms.
C
C The routine also returns the computed values of the closed-loop
C spectrum of the optimal system, i.e., the stable eigenvalues
C lambda(1),...,lambda(N) of the corresponding Hamiltonian or
C symplectic matrix associated to the optimal problem. It is assumed
C that the matrices A, G, and Q are such that the associated
C Hamiltonian or symplectic matrix has N stable eigenvalues, i.e.,
C with negative real parts, in the continuous-time case, and with
C moduli less than one, in the discrete-time case.
C
C Optionally, estimates of the conditioning and error bound on the
C solution of the Riccati equation (3) or (4) are returned.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the computation to be performed, as follows:
C = 'X': Compute the solution only;
C = 'C': Compute the reciprocal condition number only;
C = 'E': Compute the error bound only;
C = 'A': Compute all: the solution, reciprocal condition
C number, and the error bound.
C
C DICO CHARACTER*1
C Specifies the type of Riccati equation to be solved or
C analyzed, as follows:
C = 'C': Equation (3), continuous-time case;
C = 'D': Equation (4), discrete-time case.
C
C HINV CHARACTER*1
C If DICO = 'D' and JOB = 'X' or JOB = 'A', specifies which
C symplectic matrix is to be constructed, as follows:
C = 'D': The matrix H in (6) (see METHOD) is constructed;
C = 'I': The inverse of the matrix H in (6) is constructed.
C HINV is not used if DICO = 'C', or JOB = 'C' or 'E'.
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C UPLO CHARACTER*1
C Specifies which triangle of the matrices G and Q is
C stored, as follows:
C = 'U': Upper triangle is stored;
C = 'L': Lower triangle is stored.
C
C SCAL CHARACTER*1
C If JOB = 'X' or JOB = 'A', specifies whether or not a
C scaling strategy should be used, as follows:
C = 'G': General scaling should be used;
C = 'N': No scaling should be used.
C SCAL is not used if JOB = 'C' or 'E'.
C
C SORT CHARACTER*1
C If JOB = 'X' or JOB = 'A', specifies which eigenvalues
C should be obtained in the top of the Schur form, as
C follows:
C = 'S': Stable eigenvalues come first;
C = 'U': Unstable eigenvalues come first.
C SORT is not used if JOB = 'C' or 'E'.
C
C FACT CHARACTER*1
C If JOB <> 'X', specifies whether or not a real Schur
C factorization of the closed-loop system matrix Ac is
C supplied on entry, as follows:
C = 'F': On entry, T and V contain the factors from a real
C Schur factorization of the matrix Ac;
C = 'N': A Schur factorization of Ac will be computed
C and the factors will be stored in T and V.
C For a continuous-time system, the matrix Ac is given by
C Ac = A - G*X, if TRANA = 'N', or
C Ac = A - X*G, if TRANA = 'T' or 'C',
C and for a discrete-time system, the matrix Ac is given by
C Ac = inv(I_n + G*X)*A, if TRANA = 'N', or
C Ac = A*inv(I_n + X*G), if TRANA = 'T' or 'C'.
C FACT is not used if JOB = 'X'.
C
C LYAPUN CHARACTER*1
C If JOB <> 'X', specifies whether or not the original or
C "reduced" Lyapunov equations should be solved for
C estimating reciprocal condition number and/or the error
C bound, as follows:
C = 'O': Solve the original Lyapunov equations, updating
C the right-hand sides and solutions with the
C matrix V, e.g., X <-- V'*X*V;
C = 'R': Solve reduced Lyapunov equations only, without
C updating the right-hand sides and solutions.
C This means that a real Schur form T of Ac appears
C in the equations, instead of Ac.
C LYAPUN is not used if JOB = 'X'.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, Q, G, and X. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C If JOB = 'X' or JOB = 'A' or FACT = 'N' or LYAPUN = 'O',
C the leading N-by-N part of this array must contain the
C coefficient matrix A of the equation.
C If JOB = 'C' or 'E' and FACT = 'F' and LYAPUN = 'R', A is
C not referenced.
C
C LDA INTEGER
C The leading dimension of the array A.
C LDA >= MAX(1,N), if JOB = 'X' or JOB = 'A' or
C FACT = 'N' or LYAPUN = 'O'.
C LDA >= 1, otherwise.
C
C T (input or output) DOUBLE PRECISION array, dimension
C (LDT,N)
C If JOB <> 'X' and FACT = 'F', then T is an input argument
C and on entry, the leading N-by-N upper Hessenberg part of
C this array must contain the upper quasi-triangular matrix
C T in Schur canonical form from a Schur factorization of Ac
C (see argument FACT).
C If JOB <> 'X' and FACT = 'N', then T is an output argument
C and on exit, if INFO = 0 or INFO = 7, the leading N-by-N
C upper Hessenberg part of this array contains the upper
C quasi-triangular matrix T in Schur canonical form from a
C Schur factorization of Ac (see argument FACT).
C If JOB = 'X', the array T is not referenced.
C
C LDT INTEGER
C The leading dimension of the array T.
C LDT >= 1, if JOB = 'X';
C LDT >= MAX(1,N), if JOB <> 'X'.
C
C V (input or output) DOUBLE PRECISION array, dimension
C (LDV,N)
C If JOB <> 'X' and FACT = 'F', then V is an input argument
C and on entry, the leading N-by-N part of this array must
C contain the orthogonal matrix V from a real Schur
C factorization of Ac (see argument FACT).
C If JOB <> 'X' and FACT = 'N', then V is an output argument
C and on exit, if INFO = 0 or INFO = 7, the leading N-by-N
C part of this array contains the orthogonal N-by-N matrix
C from a real Schur factorization of Ac (see argument FACT).
C If JOB = 'X', the array V is not referenced.
C
C LDV INTEGER
C The leading dimension of the array V.
C LDV >= 1, if JOB = 'X';
C LDV >= MAX(1,N), if JOB <> 'X'.
C
C G (input/output) DOUBLE PRECISION array, dimension (LDG,N)
C On entry, the leading N-by-N upper triangular part (if
C UPLO = 'U') or lower triangular part (if UPLO = 'L') of
C this array must contain the upper triangular part or lower
C triangular part, respectively, of the symmetric matrix G.
C On exit, if JOB = 'X' and DICO = 'D', or JOB <> 'X' and
C LYAPUN = 'R', the leading N-by-N part of this array
C contains the symmetric matrix G fully stored.
C If JOB <> 'X' and LYAPUN = 'R', this array is modified
C internally, but restored on exit.
C
C LDG INTEGER
C The leading dimension of the array G. LDG >= MAX(1,N).
C
C Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
C On entry, the leading N-by-N upper triangular part (if
C UPLO = 'U') or lower triangular part (if UPLO = 'L') of
C this array must contain the upper triangular part or lower
C triangular part, respectively, of the symmetric matrix Q.
C On exit, if JOB = 'X' and DICO = 'D', or JOB <> 'X' and
C LYAPUN = 'R', the leading N-by-N part of this array
C contains the symmetric matrix Q fully stored.
C If JOB <> 'X' and LYAPUN = 'R', this array is modified
C internally, but restored on exit.
C
C LDQ INTEGER
C The leading dimension of the array Q. LDQ >= MAX(1,N).
C
C X (input or output) DOUBLE PRECISION array, dimension
C (LDX,N)
C If JOB = 'C' or JOB = 'E', then X is an input argument
C and on entry, the leading N-by-N part of this array must
C contain the symmetric solution matrix of the algebraic
C Riccati equation. If LYAPUN = 'R', this array is modified
C internally, but restored on exit; however, it could differ
C from the input matrix at the round-off error level.
C If JOB = 'X' or JOB = 'A', then X is an output argument
C and on exit, if INFO = 0 or INFO >= 6, the leading N-by-N
C part of this array contains the symmetric solution matrix
C X of the algebraic Riccati equation.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= MAX(1,N).
C
C SEP (output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'A', and INFO = 0 or INFO = 7, the
C estimated quantity
C sep(op(Ac),-op(Ac)'), if DICO = 'C', or
C sepd(op(Ac),op(Ac)'), if DICO = 'D'. (See METHOD.)
C If JOB = 'C' or JOB = 'A' and X = 0, or JOB = 'E', SEP is
C not referenced.
C If JOB = 'X', and INFO = 0, INFO = 5 or INFO = 7,
C SEP contains the scaling factor used, which should
C multiply the (2,1) submatrix of U to recover X from the
C first N columns of U (see METHOD). If SCAL = 'N', SEP is
C set to 1.
C
C RCOND (output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'A', and INFO = 0 or INFO = 7, an
C estimate of the reciprocal condition number of the
C algebraic Riccati equation.
C If N = 0 or X = 0, RCOND is set to 1 or 0, respectively.
C If JOB = 'X', or JOB = 'E', RCOND is not referenced.
C
C FERR (output) DOUBLE PRECISION
C If JOB = 'E' or JOB = 'A', and INFO = 0 or INFO = 7, an
C estimated forward error bound for the solution X. If XTRUE
C is the true solution, FERR bounds the magnitude of the
C largest entry in (X - XTRUE) divided by the magnitude of
C the largest entry in X.
C If N = 0 or X = 0, FERR is set to 0.
C If JOB = 'X', or JOB = 'C', FERR is not referenced.
C
C WR (output) DOUBLE PRECISION array, dimension (2*N)
C WI (output) DOUBLE PRECISION array, dimension (2*N)
C If JOB = 'X' or JOB = 'A', and INFO = 0 or INFO >= 5,
C these arrays contain the real and imaginary parts,
C respectively, of the eigenvalues of the 2N-by-2N matrix S,
C ordered as specified by SORT (except for the case
C HINV = 'D', when the order is opposite to that specified
C by SORT). The leading N elements of these arrays contain
C the closed-loop spectrum of the system matrix Ac (see
C argument FACT). Specifically,
C lambda(k) = WR(k) + j*WI(k), for k = 1,2,...,N.
C If JOB = 'C' or JOB = 'E', these arrays are not
C referenced.
C
C S (output) DOUBLE PRECISION array, dimension (LDS,2*N)
C If JOB = 'X' or JOB = 'A', and INFO = 0 or INFO >= 5, the
C leading 2N-by-2N part of this array contains the ordered
C real Schur form S of the (scaled, if SCAL = 'G')
C Hamiltonian or symplectic matrix H. That is,
C
C ( S S )
C ( 11 12 )
C S = ( ),
C ( 0 S )
C ( 22 )
C
C where S , S and S are N-by-N matrices.
C 11 12 22
C If JOB = 'C' or JOB = 'E', this array is not referenced.
C
C LDS INTEGER
C The leading dimension of the array S.
C LDS >= MAX(1,2*N), if JOB = 'X' or JOB = 'A';
C LDS >= 1, if JOB = 'C' or JOB = 'E'.
C
C Workspace
C
C IWORK INTEGER array, dimension (LIWORK)
C LIWORK >= 2*N, if JOB = 'X';
C LIWORK >= N*N, if JOB = 'C' or JOB = 'E';
C LIWORK >= MAX(2*N,N*N), if JOB = 'A'.
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, or INFO = 7, DWORK(1) returns the
C optimal value of LDWORK. If INFO = 0, or INFO >= 5, and
C JOB = 'X', or JOB = 'A', then DWORK(2) returns an estimate
C RCONDU of the reciprocal of the condition number (in the
C 1-norm) of the N-th order system of algebraic equations
C from which the solution matrix X is obtained, and DWORK(3)
C returns the reciprocal pivot growth factor for the LU
C factorization of the coefficient matrix of that system
C (see SLICOT Library routine MB02PD); if DWORK(3) is much
C less than 1, then the computed X and RCONDU could be
C unreliable.
C If DICO = 'D', and JOB = 'X', or JOB = 'A', then DWORK(4)
C returns the reciprocal condition number RCONDA of the
C given matrix A, and DWORK(5) returns the reciprocal pivot
C growth factor for A or for its leading columns, if A is
C singular (see SLICOT Library routine MB02PD); if DWORK(5)
C is much less than 1, then the computed S and RCONDA could
C be unreliable.
C On exit, if INFO = 0, or INFO >= 4, and JOB = 'X', the
C elements DWORK(6:5+4*N*N) contain the 2*N-by-2*N
C transformation matrix U which reduced the Hamiltonian or
C symplectic matrix H to the ordered real Schur form S.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= 5+MAX(1,4*N*N+8*N), if JOB = 'X' or JOB = 'A';
C This may also be used for JOB = 'C' or JOB = 'E', but
C exact bounds are as follows:
C LDWORK >= 5 + MAX(1,LWS,LWE) + LWN, where
C LWS = 0, if FACT = 'F' or LYAPUN = 'R';
C = 5*N, if FACT = 'N' and LYAPUN = 'O' and
C DICO = 'C' and JOB = 'C';
C = 5*N+N*N, if FACT = 'N' and LYAPUN = 'O' and
C DICO = 'C' and JOB = 'E';
C = 5*N+N*N, if FACT = 'N' and LYAPUN = 'O' and
C DICO = 'D';
C LWE = 2*N*N, if DICO = 'C' and JOB = 'C';
C = 4*N*N, if DICO = 'C' and JOB = 'E';
C = MAX(3,2*N*N) + N*N, if DICO = 'D' and JOB = 'C';
C = MAX(3,2*N*N) + 2*N*N, if DICO = 'D' and JOB = 'E';
C LWN = 0, if LYAPUN = 'O' or JOB = 'C';
C = 2*N, if LYAPUN = 'R' and DICO = 'C' and JOB = 'E';
C = 3*N, if LYAPUN = 'R' and DICO = 'D' and JOB = 'E'.
C For optimum performance LDWORK should sometimes be larger.
C
C BWORK LOGICAL array, dimension (LBWORK)
C LBWORK >= 2*N, if JOB = 'X' or JOB = 'A';
C LBWORK >= 1, if JOB = 'C' or JOB = 'E', and
C FACT = 'N' and LYAPUN = 'R';
C LBWORK >= 0, otherwise.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if matrix A is (numerically) singular in discrete-
C time case;
C = 2: if the Hamiltonian or symplectic matrix H cannot be
C reduced to real Schur form;
C = 3: if the real Schur form of the Hamiltonian or
C symplectic matrix H cannot be appropriately ordered;
C = 4: if the Hamiltonian or symplectic matrix H has less
C than N stable eigenvalues;
C = 5: if the N-th order system of linear algebraic
C equations, from which the solution matrix X would
C be obtained, is singular to working precision;
C = 6: if the QR algorithm failed to complete the reduction
C of the matrix Ac to Schur canonical form, T;
C = 7: if T and -T' have some almost equal eigenvalues, if
C DICO = 'C', or T has almost reciprocal eigenvalues,
C if DICO = 'D'; perturbed values were used to solve
C Lyapunov equations, but the matrix T, if given (for
C FACT = 'F'), is unchanged. (This is a warning
C indicator.)
C
C METHOD
C
C The method used is the Schur vector approach proposed by Laub [1],
C but with an optional scaling, which enhances the numerical
C stability [6]. It is assumed that [A,B] is a stabilizable pair
C (where for (3) or (4), B is any matrix such that B*B' = G with
C rank(B) = rank(G)), and [E,A] is a detectable pair, where E is any
C matrix such that E*E' = Q with rank(E) = rank(Q). Under these
C assumptions, any of the algebraic Riccati equations (1)-(4) is
C known to have a unique non-negative definite solution. See [2].
C Now consider the 2N-by-2N Hamiltonian or symplectic matrix
C
C ( op(A) -G )
C H = ( ), (5)
C ( -Q -op(A)' ),
C
C for continuous-time equation, and
C -1 -1
C ( op(A) op(A) *G )
C H = ( -1 -1 ), (6)
C ( Q*op(A) op(A)' + Q*op(A) *G )
C
C for discrete-time equation, respectively, where
C -1
C G = op(B)*R *op(B)'.
C The assumptions guarantee that H in (5) has no pure imaginary
C eigenvalues, and H in (6) has no eigenvalues on the unit circle.
C If Y is an N-by-N matrix then there exists an orthogonal matrix U
C such that U'*Y*U is an upper quasi-triangular matrix. Moreover, U
C can be chosen so that the 2-by-2 and 1-by-1 diagonal blocks
C (corresponding to the complex conjugate eigenvalues and real
C eigenvalues respectively) appear in any desired order. This is the
C ordered real Schur form. Thus, we can find an orthogonal
C similarity transformation U which puts (5) or (6) in ordered real
C Schur form
C
C U'*H*U = S = (S(1,1) S(1,2))
C ( 0 S(2,2))
C
C where S(i,j) is an N-by-N matrix and the eigenvalues of S(1,1)
C have negative real parts in case of (5), or moduli greater than
C one in case of (6). If U is conformably partitioned into four
C N-by-N blocks
C
C U = (U(1,1) U(1,2))
C (U(2,1) U(2,2))
C
C with respect to the assumptions we then have
C (a) U(1,1) is invertible and X = U(2,1)*inv(U(1,1)) solves (1),
C (2), (3), or (4) with X = X' and non-negative definite;
C (b) the eigenvalues of S(1,1) (if DICO = 'C') or S(2,2) (if
C DICO = 'D') are equal to the eigenvalues of optimal system
C (the 'closed-loop' spectrum).
C
C [A,B] is stabilizable if there exists a matrix F such that (A-BF)
C is stable. [E,A] is detectable if [A',E'] is stabilizable.
C
C The condition number of a Riccati equation is estimated as
C
C cond = ( norm(Theta)*norm(A) + norm(inv(Omega))*norm(Q) +
C norm(Pi)*norm(G) ) / norm(X),
C
C where Omega, Theta and Pi are linear operators defined by
C
C Omega(W) = op(Ac)'*W + W*op(Ac),
C Theta(W) = inv(Omega(op(W)'*X + X*op(W))),
C Pi(W) = inv(Omega(X*W*X)),
C
C in the continuous-time case, and
C
C Omega(W) = op(Ac)'*W*op(Ac) - W,
C Theta(W) = inv(Omega(op(W)'*X*op(Ac) + op(Ac)'X*op(W))),
C Pi(W) = inv(Omega(op(Ac)'*X*W*X*op(Ac))),
C
C in the discrete-time case, and Ac has been defined (see argument
C FACT). Details are given in the comments of SLICOT Library
C routines SB02QD and SB02SD.
C
C The routine estimates the quantities
C
C sep(op(Ac),-op(Ac)') = 1 / norm(inv(Omega)),
C sepd(op(Ac),op(Ac)') = 1 / norm(inv(Omega)),
C
C norm(Theta) and norm(Pi) using 1-norm condition estimator.
C
C The forward error bound is estimated using a practical error bound
C similar to the one proposed in [5].
C
C REFERENCES
C
C [1] Laub, A.J.
C A Schur Method for Solving Algebraic Riccati equations.
C IEEE Trans. Auto. Contr., AC-24, pp. 913-921, 1979.
C
C [2] Wonham, W.M.
C On a matrix Riccati equation of stochastic control.
C SIAM J. Contr., 6, pp. 681-697, 1968.
C
C [3] Sima, V.
C Algorithms for Linear-Quadratic Optimization.
C Pure and Applied Mathematics: A Series of Monographs and
C Textbooks, vol. 200, Marcel Dekker, Inc., New York, 1996.
C
C [4] Ghavimi, A.R. and Laub, A.J.
C Backward error, sensitivity, and refinement of computed
C solutions of algebraic Riccati equations.
C Numerical Linear Algebra with Applications, vol. 2, pp. 29-49,
C 1995.
C
C [5] Higham, N.J.
C Perturbation theory and backward error for AX-XB=C.
C BIT, vol. 33, pp. 124-136, 1993.
C
C [6] Petkov, P.Hr., Konstantinov, M.M., and Mehrmann, V.
C DGRSVX and DMSRIC: Fortran 77 subroutines for solving
C continuous-time matrix algebraic Riccati equations with
C condition and accuracy estimates.
C Preprint SFB393/98-16, Fak. f. Mathematik, Tech. Univ.
C Chemnitz, May 1998.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations. The solution accuracy
C can be controlled by the output parameter FERR.
C
C FURTHER COMMENTS
C
C To obtain a stabilizing solution of the algebraic Riccati
C equation for DICO = 'D', set SORT = 'U', if HINV = 'D', or set
C SORT = 'S', if HINV = 'I'.
C
C The routine can also compute the anti-stabilizing solutions of
C the algebraic Riccati equations, by specifying
C SORT = 'U' if DICO = 'D' and HINV = 'I', or DICO = 'C', or
C SORT = 'S' if DICO = 'D' and HINV = 'D'.
C
C Usually, the combinations HINV = 'D' and SORT = 'U', or HINV = 'I'
C and SORT = 'U', for stabilizing and anti-stabilizing solutions,
C respectively, will be faster then the other combinations [3].
C
C The option LYAPUN = 'R' may produce slightly worse or better
C estimates, and it is faster than the option 'O'.
C
C This routine is a functionally extended and more accurate
C version of the SLICOT Library routine SB02MD. Transposed problems
C can be dealt with as well. Iterative refinement is used whenever
C useful to solve linear algebraic systems. Condition numbers and
C error bounds on the solutions are optionally provided.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 1999.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 2001,
C Dec. 2002, Oct. 2004.
C
C KEYWORDS
C
C Algebraic Riccati equation, closed loop system, continuous-time
C system, discrete-time system, optimal regulator, Schur form.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
C .. Scalar Arguments ..
CHARACTER DICO, FACT, HINV, JOB, LYAPUN, SCAL, SORT,
$ TRANA, UPLO
INTEGER INFO, LDA, LDG, LDQ, LDS, LDT, LDV, LDWORK, LDX,
$ N
DOUBLE PRECISION FERR, RCOND, SEP
C .. Array Arguments ..
LOGICAL BWORK(*)
INTEGER IWORK(*)
DOUBLE PRECISION A(LDA,*), DWORK(*), G(LDG,*), Q(LDQ,*),
$ S(LDS,*), T(LDT,*), V(LDV,*), WI(*), WR(*),
$ X(LDX,*)
C .. Local Scalars ..
LOGICAL COLEQU, DISCR, JBXA, JOBA, JOBC, JOBE, JOBX,
$ LHINV, LSCAL, LSCL, LSORT, LUPLO, NOFACT,
$ NOTRNA, ROWEQU, UPDATE
CHARACTER EQUED, JOBS, LOFACT, LOUP, TRANAT
INTEGER I, IERR, IU, IW, IWB, IWC, IWF, IWI, IWR, LDW,
$ LWE, LWN, LWS, N2, NN, NP1, NROT
DOUBLE PRECISION GNORM, QNORM, PIVOTA, PIVOTU, RCONDA, RCONDU,
$ WRKOPT
C .. External Functions ..
LOGICAL LSAME, SB02MR, SB02MS, SB02MV, SB02MW
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANSY, LSAME, SB02MR, SB02MS,
$ SB02MV, SB02MW
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEES, DGESV, DLACPY, DLASCL,
$ DLASET, DSCAL, DSWAP, DSYMM, MA02AD, MA02ED,
$ MB01RU, MB01SD, MB02PD, SB02QD, SB02RU, SB02SD,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC DBLE, MAX
C .. Executable Statements ..
C
C Decode the input parameters.
C
N2 = N + N
NN = N*N
NP1 = N + 1
INFO = 0
JOBA = LSAME( JOB, 'A' )
JOBC = LSAME( JOB, 'C' )
JOBE = LSAME( JOB, 'E' )
JOBX = LSAME( JOB, 'X' )
NOFACT = LSAME( FACT, 'N' )
NOTRNA = LSAME( TRANA, 'N' )
DISCR = LSAME( DICO, 'D' )
LUPLO = LSAME( UPLO, 'U' )
LSCAL = LSAME( SCAL, 'G' )
LSORT = LSAME( SORT, 'S' )
UPDATE = LSAME( LYAPUN, 'O' )
JBXA = JOBX .OR. JOBA
LHINV = .FALSE.
IF ( DISCR .AND. JBXA )
$ LHINV = LSAME( HINV, 'D' )
C
C Test the input scalar arguments.
C
IF( .NOT.( JBXA .OR. JOBC .OR. JOBE ) ) THEN
INFO = -1
ELSE IF( .NOT.( DISCR .OR. LSAME( DICO, 'C' ) ) ) THEN
INFO = -2
ELSE IF( DISCR .AND. JBXA ) THEN
IF( .NOT.( LHINV .OR. LSAME( HINV, 'I' ) ) )
$ INFO = -3
END IF
IF( INFO.EQ.0 ) THEN
IF( .NOT.( NOTRNA .OR. LSAME( TRANA, 'T' ) .OR.
$ LSAME( TRANA, 'C' ) ) ) THEN
INFO = -4
ELSE IF( .NOT.( LUPLO .OR. LSAME( UPLO, 'L' ) ) )
$ THEN
INFO = -5
ELSE IF( JBXA ) THEN
IF( .NOT.( LSCAL .OR. LSAME( SCAL, 'N' ) ) ) THEN
INFO = -6
ELSE IF( .NOT.( LSORT .OR. LSAME( SORT, 'U' ) ) ) THEN
INFO = -7
END IF
END IF
IF( INFO.EQ.0 .AND. .NOT.JOBX ) THEN
IF( .NOT.( NOFACT .OR. LSAME( FACT, 'F' ) ) ) THEN
INFO = -8
ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
INFO = -9
END IF
END IF
IF( INFO.EQ.0 ) THEN
IF( N.LT.0 ) THEN
INFO = -10
ELSE IF( LDA.LT.1 .OR. ( ( JBXA .OR. NOFACT .OR. UPDATE )
$ .AND. LDA.LT.N ) ) THEN
INFO = -12
ELSE IF( LDT.LT.1 .OR. ( .NOT. JOBX .AND. LDT.LT.N ) ) THEN
INFO = -14
ELSE IF( LDV.LT.1 .OR. ( .NOT. JOBX .AND. LDV.LT.N ) ) THEN
INFO = -16
ELSE IF( LDG.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -20
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -22
ELSE IF( LDS.LT.1 .OR. ( JBXA .AND. LDS.LT.N2 ) ) THEN
INFO = -29
ELSE
IF( JBXA ) THEN
IF( LDWORK.LT.5 + MAX( 1, 4*NN + 8*N ) )
$ INFO = -32
ELSE
IF( NOFACT .AND. UPDATE ) THEN
IF( .NOT.DISCR .AND. JOBC ) THEN
LWS = 5*N
ELSE
LWS = 5*N + NN
END IF
ELSE
LWS = 0
END IF
IF( DISCR ) THEN
IF( JOBC ) THEN
LWE = MAX( 3, 2*NN) + NN
ELSE
LWE = MAX( 3, 2*NN) + 2*NN
END IF
ELSE
IF( JOBC ) THEN
LWE = 2*NN
ELSE
LWE = 4*NN
END IF
END IF
IF( UPDATE .OR. JOBC ) THEN
LWN = 0
ELSE
IF( DISCR ) THEN
LWN = 3*N
ELSE
LWN = 2*N
END IF
END IF
IF( LDWORK.LT.5 + MAX( 1, LWS, LWE ) + LWN )
$ INFO = -32
END IF
END IF
END IF
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'SB02RD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( N.EQ.0 ) THEN
IF( JOBX )
$ SEP = ONE
IF( JOBC .OR. JOBA )
$ RCOND = ONE
IF( JOBE .OR. JOBA )
$ FERR = ZERO
DWORK(1) = ONE
DWORK(2) = ONE
DWORK(3) = ONE
IF ( DISCR ) THEN
DWORK(4) = ONE
DWORK(5) = ONE
END IF
RETURN
END IF
C
IF ( JBXA ) THEN
C
C Compute the solution matrix X.
C
C Initialise the Hamiltonian or symplectic matrix associated with
C the problem.
C Workspace: need 0 if DICO = 'C';
C 6*N, if DICO = 'D'.
C
CALL SB02RU( DICO, HINV, TRANA, UPLO, N, A, LDA, G, LDG, Q,
$ LDQ, S, LDS, IWORK, DWORK, LDWORK, IERR )
C
IF ( IERR.NE.0 ) THEN
INFO = 1
IF ( DISCR ) THEN
DWORK(4) = DWORK(1)
DWORK(5) = DWORK(2)
END IF
RETURN
END IF
C
IF ( DISCR ) THEN
WRKOPT = 6*N
RCONDA = DWORK(1)
PIVOTA = DWORK(2)
ELSE
WRKOPT = 0
END IF
C
IF ( LSCAL ) THEN
C
C Scale the Hamiltonian or symplectic matrix S, using the
C square roots of the norms of the matrices Q and G.
C
QNORM = SQRT( DLANSY( '1-norm', UPLO, N, Q, LDQ, DWORK ) )
GNORM = SQRT( DLANSY( '1-norm', UPLO, N, G, LDG, DWORK ) )
C
LSCL = QNORM.GT.GNORM .AND. GNORM.GT.ZERO
IF( LSCL ) THEN
CALL DLASCL( 'G', 0, 0, QNORM, GNORM, N, N, S(NP1,1),
$ LDS, IERR )
CALL DLASCL( 'G', 0, 0, GNORM, QNORM, N, N, S(1,NP1),
$ LDS, IERR )
END IF
ELSE
LSCL = .FALSE.
END IF
C
C Find the ordered Schur factorization of S, S = U*H*U'.
C Workspace: need 5 + 4*N*N + 6*N;
C prefer larger.
C
IU = 6
IW = IU + 4*NN
LDW = LDWORK - IW + 1
IF ( .NOT.DISCR ) THEN
IF ( LSORT ) THEN
CALL DGEES( 'Vectors', 'Sorted', SB02MV, N2, S, LDS,
$ NROT, WR, WI, DWORK(IU), N2, DWORK(IW), LDW,
$ BWORK, IERR )
ELSE
CALL DGEES( 'Vectors', 'Sorted', SB02MR, N2, S, LDS,
$ NROT, WR, WI, DWORK(IU), N2, DWORK(IW), LDW,
$ BWORK, IERR )
END IF
ELSE
IF ( LSORT ) THEN
CALL DGEES( 'Vectors', 'Sorted', SB02MW, N2, S, LDS,
$ NROT, WR, WI, DWORK(IU), N2, DWORK(IW), LDW,
$ BWORK, IERR )
ELSE
CALL DGEES( 'Vectors', 'Sorted', SB02MS, N2, S, LDS,
$ NROT, WR, WI, DWORK(IU), N2, DWORK(IW), LDW,
$ BWORK, IERR )
END IF
IF ( LHINV ) THEN
CALL DSWAP( N, WR, 1, WR(NP1), 1 )
CALL DSWAP( N, WI, 1, WI(NP1), 1 )
END IF
END IF
IF ( IERR.GT.N2 ) THEN
INFO = 3
ELSE IF ( IERR.GT.0 ) THEN
INFO = 2
ELSE IF ( NROT.NE.N ) THEN
INFO = 4
END IF
IF ( INFO.NE.0 ) THEN
IF ( DISCR ) THEN
DWORK(4) = RCONDA
DWORK(5) = PIVOTA
END IF
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(IW) + DBLE( IW - 1 ) )
C
C Compute the solution of X*U(1,1) = U(2,1) using
C LU factorization and iterative refinement. The (2,1) block of S
C is used as a workspace for factoring U(1,1).
C Workspace: need 5 + 4*N*N + 8*N.
C
C First transpose U(2,1) in-situ.
C
DO 20 I = 1, N - 1
CALL DSWAP( N-I, DWORK(IU+N+I*(N2+1)-1), N2,
$ DWORK(IU+N+(I-1)*(N2+1)+1), 1 )
20 CONTINUE
C
IWR = IW
IWC = IWR + N
IWF = IWC + N
IWB = IWF + N
IW = IWB + N
C
CALL MB02PD( 'Equilibrate', 'Transpose', N, N, DWORK(IU), N2,
$ S(NP1,1), LDS, IWORK, EQUED, DWORK(IWR),
$ DWORK(IWC), DWORK(IU+N), N2, X, LDX, RCONDU,
$ DWORK(IWF), DWORK(IWB), IWORK(NP1), DWORK(IW),
$ IERR )
IF( JOBX ) THEN
C
C Restore U(2,1) back in-situ.
C
DO 40 I = 1, N - 1
CALL DSWAP( N-I, DWORK(IU+N+I*(N2+1)-1), N2,
$ DWORK(IU+N+(I-1)*(N2+1)+1), 1 )
40 CONTINUE
C
IF( .NOT.LSAME( EQUED, 'N' ) ) THEN
C
C Undo the equilibration of U(1,1) and U(2,1).
C
ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
C
IF( ROWEQU ) THEN
C
DO 60 I = 1, N
DWORK(IWR+I-1) = ONE / DWORK(IWR+I-1)
60 CONTINUE
C
CALL MB01SD( 'Row scaling', N, N, DWORK(IU), N2,
$ DWORK(IWR), DWORK(IWC) )
END IF
C
IF( COLEQU ) THEN
C
DO 80 I = 1, N
DWORK(IWC+I-1) = ONE / DWORK(IWC+I-1)
80 CONTINUE
C
CALL MB01SD( 'Column scaling', N, N, DWORK(IU), N2,
$ DWORK(IWR), DWORK(IWC) )
CALL MB01SD( 'Column scaling', N, N, DWORK(IU+N), N2,
$ DWORK(IWR), DWORK(IWC) )
END IF
END IF
C
C Set S(2,1) to zero.
C
CALL DLASET( 'Full', N, N, ZERO, ZERO, S(NP1,1), LDS )
END IF
C
PIVOTU = DWORK(IW)
C
IF ( IERR.GT.0 ) THEN
C
C Singular matrix. Set INFO and DWORK for error return.
C
INFO = 5
GO TO 160
END IF
C
C Make sure the solution matrix X is symmetric.
C
DO 100 I = 1, N - 1
CALL DAXPY( N-I, ONE, X(I,I+1), LDX, X(I+1,I), 1 )
CALL DSCAL( N-I, HALF, X(I+1,I), 1 )
CALL DCOPY( N-I, X(I+1,I), 1, X(I,I+1), LDX )
100 CONTINUE
C
IF( LSCAL ) THEN
C
C Undo scaling for the solution matrix.
C
IF( LSCL )
$ CALL DLASCL( 'G', 0, 0, GNORM, QNORM, N, N, X, LDX,
$ IERR )
END IF
END IF
C
IF ( .NOT.JOBX ) THEN
IF ( .NOT.JOBA )
$ WRKOPT = 0
C
C Estimate the conditioning and compute an error bound on the
C solution of the algebraic Riccati equation.
C
IW = 6
LOFACT = FACT
IF ( NOFACT .AND. .NOT.UPDATE ) THEN
C
C Compute Ac and its Schur factorization.
C
IF ( DISCR ) THEN
CALL DLASET( 'Full', N, N, ZERO, ONE, DWORK(IW), N )
CALL DSYMM( 'Left', UPLO, N, N, ONE, G, LDG, X, LDX,
$ ONE, DWORK(IW), N )
IF ( NOTRNA ) THEN
C
C Compute Ac = inv(I_n + G*X)*A.
C
CALL DLACPY( 'Full', N, N, A, LDA, T, LDT )
CALL DGESV( N, N, DWORK(IW), N, IWORK, T, LDT, IERR )
ELSE
C
C Compute Ac = A*inv(I_n + X*G).
C
CALL MA02AD( 'Full', N, N, A, LDA, T, LDT )
CALL DGESV( N, N, DWORK(IW), N, IWORK, T, LDT, IERR )
DO 120 I = 2, N
CALL DSWAP( I-1, T(1,I), 1, T(I,1), LDT )
120 CONTINUE
END IF
C
ELSE
C
CALL DLACPY( 'Full', N, N, A, LDA, T, LDT )
IF ( NOTRNA ) THEN
C
C Compute Ac = A - G*X.
C
CALL DSYMM( 'Left', UPLO, N, N, -ONE, G, LDG, X, LDX,
$ ONE, T, LDT )
ELSE
C
C Compute Ac = A - X*G.
C
CALL DSYMM( 'Right', UPLO, N, N, -ONE, G, LDG, X, LDX,
$ ONE, T, LDT )
END IF
END IF
C
C Compute the Schur factorization of Ac, Ac = V*T*V'.
C Workspace: need 5 + 5*N.
C prefer larger.
C
IWR = IW
IWI = IWR + N
IW = IWI + N
LDW = LDWORK - IW + 1
C
CALL DGEES( 'Vectors', 'Not ordered', SB02MS, N, T, LDT,
$ NROT, DWORK(IWR), DWORK(IWI), V, LDV, DWORK(IW),
$ LDW, BWORK, IERR )
C
IF( IERR.NE.0 ) THEN
INFO = 6
GO TO 160
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(IW) + DBLE( IW - 1 ) )
LOFACT = 'F'
IW = 6
END IF
C
IF ( .NOT.UPDATE ) THEN
C
C Update G, Q, and X using the orthogonal matrix V.
C
TRANAT = 'T'
C
C Save the diagonal elements of G and Q.
C
CALL DCOPY( N, G, LDG+1, DWORK(IW), 1 )
CALL DCOPY( N, Q, LDQ+1, DWORK(IW+N), 1 )
IW = IW + N2
C
IF ( JOBA )
$ CALL DLACPY( 'Full', N, N, X, LDX, S(NP1,1), LDS )
CALL MB01RU( UPLO, TRANAT, N, N, ZERO, ONE, X, LDX, V, LDV,
$ X, LDX, DWORK(IW), NN, IERR )
CALL DSCAL( N, HALF, X, LDX+1 )
CALL MA02ED( UPLO, N, X, LDX )
IF( .NOT.DISCR ) THEN
CALL MA02ED( UPLO, N, G, LDG )
CALL MA02ED( UPLO, N, Q, LDQ )
END IF
CALL MB01RU( UPLO, TRANAT, N, N, ZERO, ONE, G, LDG, V, LDV,
$ G, LDG, DWORK(IW), NN, IERR )
CALL DSCAL( N, HALF, G, LDG+1 )
CALL MB01RU( UPLO, TRANAT, N, N, ZERO, ONE, Q, LDQ, V, LDV,
$ Q, LDQ, DWORK(IW), NN, IERR )
CALL DSCAL( N, HALF, Q, LDQ+1 )
END IF
C
C Estimate the conditioning and/or the error bound.
C Workspace: 5 + MAX(1,LWS,LWE) + LWN, where
C
C LWS = 0, if FACT = 'F' or LYAPUN = 'R';
C = 5*N, if FACT = 'N' and LYAPUN = 'O' and DICO = 'C'
C and JOB = 'C';
C = 5*N+N*N, if FACT = 'N' and LYAPUN = 'O' and DICO = 'C'
C and (JOB = 'E' or JOB = 'A');
C = 5*N+N*N, if FACT = 'N' and LYAPUN = 'O' and
C DICO = 'D';
C LWE = 2*N*N, if DICO = 'C' and JOB = 'C';
C = 4*N*N, if DICO = 'C' and (JOB = 'E' or
C JOB = 'A');
C = MAX(3,2*N*N) + N*N, if DICO = 'D' and JOB = 'C';
C = MAX(3,2*N*N) + 2*N*N, if DICO = 'D' and (JOB = 'E' or
C JOB = 'A');
C LWN = 0, if LYAPUN = 'O' or JOB = 'C';
C = 2*N, if LYAPUN = 'R' and DICO = 'C' and (JOB = 'E' or
C JOB = 'A');
C = 3*N, if LYAPUN = 'R' and DICO = 'D' and (JOB = 'E' or
C JOB = 'A').
C
LDW = LDWORK - IW + 1
IF ( JOBA ) THEN
JOBS = 'B'
ELSE
JOBS = JOB
END IF
C
IF ( DISCR ) THEN
CALL SB02SD( JOBS, LOFACT, TRANA, UPLO, LYAPUN, N, A, LDA,
$ T, LDT, V, LDV, G, LDG, Q, LDQ, X, LDX, SEP,
$ RCOND, FERR, IWORK, DWORK(IW), LDW, IERR )
ELSE
CALL SB02QD( JOBS, LOFACT, TRANA, UPLO, LYAPUN, N, A, LDA,
$ T, LDT, V, LDV, G, LDG, Q, LDQ, X, LDX, SEP,
$ RCOND, FERR, IWORK, DWORK(IW), LDW, IERR )
END IF
C
WRKOPT = MAX( WRKOPT, DWORK(IW) + DBLE( IW - 1 ) )
IF( IERR.EQ.NP1 ) THEN
INFO = 7
ELSE IF( IERR.GT.0 ) THEN
INFO = 6
GO TO 160
END IF
C
IF ( .NOT.UPDATE ) THEN
C
C Restore X, G, and Q and set S(2,1) to zero, if needed.
C
IF ( JOBA ) THEN
CALL DLACPY( 'Full', N, N, S(NP1,1), LDS, X, LDX )
CALL DLASET( 'Full', N, N, ZERO, ZERO, S(NP1,1), LDS )
ELSE
CALL MB01RU( UPLO, TRANA, N, N, ZERO, ONE, X, LDX, V,
$ LDV, X, LDX, DWORK(IW), NN, IERR )
CALL DSCAL( N, HALF, X, LDX+1 )
CALL MA02ED( UPLO, N, X, LDX )
END IF
IF ( LUPLO ) THEN
LOUP = 'L'
ELSE
LOUP = 'U'
END IF
C
IW = 6
CALL DCOPY( N, DWORK(IW), 1, G, LDG+1 )
CALL MA02ED( LOUP, N, G, LDG )
CALL DCOPY( N, DWORK(IW+N), 1, Q, LDQ+1 )
CALL MA02ED( LOUP, N, Q, LDQ )
END IF
C
END IF
C
C Set the optimal workspace and other details.
C
DWORK(1) = WRKOPT
160 CONTINUE
IF( JBXA ) THEN
DWORK(2) = RCONDU
DWORK(3) = PIVOTU
IF ( DISCR ) THEN
DWORK(4) = RCONDA
DWORK(5) = PIVOTA
END IF
IF( JOBX ) THEN
IF ( LSCL ) THEN
SEP = QNORM / GNORM
ELSE
SEP = ONE
END IF
END IF
END IF
C
RETURN
C *** Last line of SB02RD ***
END
|