1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
|
SUBROUTINE SB02SD( JOB, FACT, TRANA, UPLO, LYAPUN, N, A, LDA, T,
$ LDT, U, LDU, G, LDG, Q, LDQ, X, LDX, SEPD,
$ RCOND, FERR, IWORK, DWORK, LDWORK, INFO )
C
C SLICOT RELEASE 5.0.
C
C Copyright (c) 2002-2009 NICONET e.V.
C
C This program is free software: you can redistribute it and/or
C modify it under the terms of the GNU General Public License as
C published by the Free Software Foundation, either version 2 of
C the License, or (at your option) any later version.
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU General Public License for more details.
C
C You should have received a copy of the GNU General Public License
C along with this program. If not, see
C <http://www.gnu.org/licenses/>.
C
C PURPOSE
C
C To estimate the conditioning and compute an error bound on the
C solution of the real discrete-time matrix algebraic Riccati
C equation (see FURTHER COMMENTS)
C -1
C X = op(A)'*X*(I_n + G*X) *op(A) + Q, (1)
C
C where op(A) = A or A' (A**T) and Q, G are symmetric (Q = Q**T,
C G = G**T). The matrices A, Q and G are N-by-N and the solution X
C is N-by-N.
C
C ARGUMENTS
C
C Mode Parameters
C
C JOB CHARACTER*1
C Specifies the computation to be performed, as follows:
C = 'C': Compute the reciprocal condition number only;
C = 'E': Compute the error bound only;
C = 'B': Compute both the reciprocal condition number and
C the error bound.
C
C FACT CHARACTER*1
C Specifies whether or not the real Schur factorization of
C the matrix Ac = inv(I_n + G*X)*A (if TRANA = 'N'), or
C Ac = A*inv(I_n + X*G) (if TRANA = 'T' or 'C'), is supplied
C on entry, as follows:
C = 'F': On entry, T and U (if LYAPUN = 'O') contain the
C factors from the real Schur factorization of the
C matrix Ac;
C = 'N': The Schur factorization of Ac will be computed
C and the factors will be stored in T and U (if
C LYAPUN = 'O').
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C UPLO CHARACTER*1
C Specifies which part of the symmetric matrices Q and G is
C to be used, as follows:
C = 'U': Upper triangular part;
C = 'L': Lower triangular part.
C
C LYAPUN CHARACTER*1
C Specifies whether or not the original Lyapunov equations
C should be solved in the iterative estimation process,
C as follows:
C = 'O': Solve the original Lyapunov equations, updating
C the right-hand sides and solutions with the
C matrix U, e.g., RHS <-- U'*RHS*U;
C = 'R': Solve reduced Lyapunov equations only, without
C updating the right-hand sides and solutions.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrices A, X, Q, and G. N >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C If FACT = 'N' or LYAPUN = 'O', the leading N-by-N part of
C this array must contain the matrix A.
C If FACT = 'F' and LYAPUN = 'R', A is not referenced.
C
C LDA INTEGER
C The leading dimension of the array A.
C LDA >= max(1,N), if FACT = 'N' or LYAPUN = 'O';
C LDA >= 1, if FACT = 'F' and LYAPUN = 'R'.
C
C T (input or output) DOUBLE PRECISION array, dimension
C (LDT,N)
C If FACT = 'F', then T is an input argument and on entry,
C the leading N-by-N upper Hessenberg part of this array
C must contain the upper quasi-triangular matrix T in Schur
C canonical form from a Schur factorization of Ac (see
C argument FACT).
C If FACT = 'N', then T is an output argument and on exit,
C if INFO = 0 or INFO = N+1, the leading N-by-N upper
C Hessenberg part of this array contains the upper quasi-
C triangular matrix T in Schur canonical form from a Schur
C factorization of Ac (see argument FACT).
C
C LDT INTEGER
C The leading dimension of the array T. LDT >= max(1,N).
C
C U (input or output) DOUBLE PRECISION array, dimension
C (LDU,N)
C If LYAPUN = 'O' and FACT = 'F', then U is an input
C argument and on entry, the leading N-by-N part of this
C array must contain the orthogonal matrix U from a real
C Schur factorization of Ac (see argument FACT).
C If LYAPUN = 'O' and FACT = 'N', then U is an output
C argument and on exit, if INFO = 0 or INFO = N+1, it
C contains the orthogonal N-by-N matrix from a real Schur
C factorization of Ac (see argument FACT).
C If LYAPUN = 'R', the array U is not referenced.
C
C LDU INTEGER
C The leading dimension of the array U.
C LDU >= 1, if LYAPUN = 'R';
C LDU >= MAX(1,N), if LYAPUN = 'O'.
C
C G (input) DOUBLE PRECISION array, dimension (LDG,N)
C If UPLO = 'U', the leading N-by-N upper triangular part of
C this array must contain the upper triangular part of the
C matrix G.
C If UPLO = 'L', the leading N-by-N lower triangular part of
C this array must contain the lower triangular part of the
C matrix G. _
C Matrix G should correspond to G in the "reduced" Riccati
C equation (with matrix T, instead of A), if LYAPUN = 'R'.
C See METHOD.
C
C LDG INTEGER
C The leading dimension of the array G. LDG >= max(1,N).
C
C Q (input) DOUBLE PRECISION array, dimension (LDQ,N)
C If UPLO = 'U', the leading N-by-N upper triangular part of
C this array must contain the upper triangular part of the
C matrix Q.
C If UPLO = 'L', the leading N-by-N lower triangular part of
C this array must contain the lower triangular part of the
C matrix Q. _
C Matrix Q should correspond to Q in the "reduced" Riccati
C equation (with matrix T, instead of A), if LYAPUN = 'R'.
C See METHOD.
C
C LDQ INTEGER
C The leading dimension of the array Q. LDQ >= max(1,N).
C
C X (input) DOUBLE PRECISION array, dimension (LDX,N)
C The leading N-by-N part of this array must contain the
C symmetric solution matrix of the original Riccati
C equation (with matrix A), if LYAPUN = 'O', or of the
C "reduced" Riccati equation (with matrix T), if
C LYAPUN = 'R'. See METHOD.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= max(1,N).
C
C SEPD (output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'B', the estimated quantity
C sepd(op(Ac),op(Ac)').
C If N = 0, or X = 0, or JOB = 'E', SEPD is not referenced.
C
C RCOND (output) DOUBLE PRECISION
C If JOB = 'C' or JOB = 'B', an estimate of the reciprocal
C condition number of the discrete-time Riccati equation.
C If N = 0 or X = 0, RCOND is set to 1 or 0, respectively.
C If JOB = 'E', RCOND is not referenced.
C
C FERR (output) DOUBLE PRECISION
C If JOB = 'E' or JOB = 'B', an estimated forward error
C bound for the solution X. If XTRUE is the true solution,
C FERR bounds the magnitude of the largest entry in
C (X - XTRUE) divided by the magnitude of the largest entry
C in X.
C If N = 0 or X = 0, FERR is set to 0.
C If JOB = 'C', FERR is not referenced.
C
C Workspace
C
C IWORK INTEGER array, dimension (N*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0 or INFO = N+1, DWORK(1) returns the
C optimal value of LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C Let LWA = N*N, if LYAPUN = 'O';
C LWA = 0, otherwise,
C and LWN = N, if LYAPUN = 'R' and JOB = 'E' or 'B';
C LWN = 0, otherwise.
C If FACT = 'N', then
C LDWORK = MAX(LWA + 5*N, MAX(3,2*N*N) + N*N),
C if JOB = 'C';
C LDWORK = MAX(LWA + 5*N, MAX(3,2*N*N) + 2*N*N + LWN),
C if JOB = 'E' or 'B'.
C If FACT = 'F', then
C LDWORK = MAX(3,2*N*N) + N*N, if JOB = 'C';
C LDWORK = MAX(3,2*N*N) + 2*N*N + LWN,
C if JOB = 'E' or 'B'.
C For good performance, LDWORK must generally be larger.
C
C Error indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C > 0: if INFO = i, i <= N, the QR algorithm failed to
C complete the reduction of the matrix Ac to Schur
C canonical form (see LAPACK Library routine DGEES);
C on exit, the matrix T(i+1:N,i+1:N) contains the
C partially converged Schur form, and DWORK(i+1:N) and
C DWORK(N+i+1:2*N) contain the real and imaginary
C parts, respectively, of the converged eigenvalues;
C this error is unlikely to appear;
C = N+1: if T has almost reciprocal eigenvalues; perturbed
C values were used to solve Lyapunov equations, but
C the matrix T, if given (for FACT = 'F'), is
C unchanged.
C
C METHOD
C
C The condition number of the Riccati equation is estimated as
C
C cond = ( norm(Theta)*norm(A) + norm(inv(Omega))*norm(Q) +
C norm(Pi)*norm(G) ) / norm(X),
C
C where Omega, Theta and Pi are linear operators defined by
C
C Omega(W) = op(Ac)'*W*op(Ac) - W,
C Theta(W) = inv(Omega(op(W)'*X*op(Ac) + op(Ac)'X*op(W))),
C Pi(W) = inv(Omega(op(Ac)'*X*W*X*op(Ac))),
C
C and Ac = inv(I_n + G*X)*A (if TRANA = 'N'), or
C Ac = A*inv(I_n + X*G) (if TRANA = 'T' or 'C').
C
C Note that the Riccati equation (1) is equivalent to
C
C X = op(Ac)'*X*op(Ac) + op(Ac)'*X*G*X*op(Ac) + Q, (2)
C
C and to
C _ _ _ _ _ _
C X = op(T)'*X*op(T) + op(T)'*X*G*X*op(T) + Q, (3)
C _ _ _
C where X = U'*X*U, Q = U'*Q*U, and G = U'*G*U, with U the
C orthogonal matrix reducing Ac to a real Schur form, T = U'*Ac*U.
C
C The routine estimates the quantities
C
C sepd(op(Ac),op(Ac)') = 1 / norm(inv(Omega)),
C
C norm(Theta) and norm(Pi) using 1-norm condition estimator.
C
C The forward error bound is estimated using a practical error bound
C similar to the one proposed in [2].
C
C REFERENCES
C
C [1] Ghavimi, A.R. and Laub, A.J.
C Backward error, sensitivity, and refinement of computed
C solutions of algebraic Riccati equations.
C Numerical Linear Algebra with Applications, vol. 2, pp. 29-49,
C 1995.
C
C [2] Higham, N.J.
C Perturbation theory and backward error for AX-XB=C.
C BIT, vol. 33, pp. 124-136, 1993.
C
C [3] Petkov, P.Hr., Konstantinov, M.M., and Mehrmann, V.
C DGRSVX and DMSRIC: Fortran 77 subroutines for solving
C continuous-time matrix algebraic Riccati equations with
C condition and accuracy estimates.
C Preprint SFB393/98-16, Fak. f. Mathematik, Tech. Univ.
C Chemnitz, May 1998.
C
C NUMERICAL ASPECTS
C 3
C The algorithm requires 0(N ) operations.
C The accuracy of the estimates obtained depends on the solution
C accuracy and on the properties of the 1-norm estimator.
C
C FURTHER COMMENTS
C
C The option LYAPUN = 'R' may occasionally produce slightly worse
C or better estimates, and it is much faster than the option 'O'.
C When SEPD is computed and it is zero, the routine returns
C immediately, with RCOND and FERR (if requested) set to 0 and 1,
C respectively. In this case, the equation is singular.
C
C Let B be an N-by-M matrix (if TRANA = 'N') or an M-by-N matrix
C (if TRANA = 'T' or 'C'), let R be an M-by-M symmetric positive
C definite matrix (R = R**T), and denote G = op(B)*inv(R)*op(B)'.
C Then, the Riccati equation (1) is equivalent to the standard
C discrete-time matrix algebraic Riccati equation
C
C X = op(A)'*X*op(A) - (4)
C -1
C op(A)'*X*op(B)*(R + op(B)'*X*op(B)) *op(B)'*X*op(A) + Q.
C
C By symmetry, the equation (1) is also equivalent to
C -1
C X = op(A)'*(I_n + X*G) *X*op(A) + Q.
C
C CONTRIBUTOR
C
C V. Sima, Research Institute for Informatics, Bucharest, and
C P.Hr. Petkov, Technical University of Sofia, March 1999.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, Oct. 2004.
C
C KEYWORDS
C
C Conditioning, error estimates, orthogonal transformation,
C real Schur form, Riccati equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, FOUR, HALF
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
$ FOUR = 4.0D+0, HALF = 0.5D+0 )
C ..
C .. Scalar Arguments ..
CHARACTER FACT, JOB, LYAPUN, TRANA, UPLO
INTEGER INFO, LDA, LDG, LDQ, LDT, LDU, LDWORK, LDX, N
DOUBLE PRECISION FERR, RCOND, SEPD
C ..
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), DWORK( * ), G( LDG, * ),
$ Q( LDQ, * ), T( LDT, * ), U( LDU, * ),
$ X( LDX, * )
C ..
C .. Local Scalars ..
LOGICAL JOBB, JOBC, JOBE, LOWER, NEEDAC, NOFACT,
$ NOTRNA, UPDATE
CHARACTER LOUP, SJOB, TRANAT
INTEGER I, IABS, INFO2, IRES, IWRK, IXBS, IXMA, J, JJ,
$ KASE, LDW, LWA, LWR, NN, SDIM, WRKOPT
DOUBLE PRECISION ANORM, BIGNUM, DENOM, EPS, EPSN, EPST, EST,
$ GNORM, PINORM, QNORM, SCALE, TEMP, THNORM,
$ TMAX, XANORM, XNORM
C ..
C .. Local Arrays ..
LOGICAL BWORK( 1 )
C ..
C .. External Functions ..
LOGICAL LSAME, SELECT
DOUBLE PRECISION DLAMCH, DLANGE, DLANHS, DLANSY
EXTERNAL DLAMCH, DLANGE, DLANHS, DLANSY, LSAME, SELECT
C ..
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEES, DGEMM, DGESV, DLACON,
$ DLACPY, DLASET, DSCAL, DSWAP, DSYMM, MA02ED,
$ MB01RU, MB01RX, MB01RY, MB01UD, SB03MX, SB03SX,
$ SB03SY, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, MAX, MIN
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
JOBC = LSAME( JOB, 'C' )
JOBE = LSAME( JOB, 'E' )
JOBB = LSAME( JOB, 'B' )
NOFACT = LSAME( FACT, 'N' )
NOTRNA = LSAME( TRANA, 'N' )
LOWER = LSAME( UPLO, 'L' )
UPDATE = LSAME( LYAPUN, 'O' )
C
NEEDAC = UPDATE .AND. .NOT.JOBC
C
NN = N*N
IF( UPDATE ) THEN
LWA = NN
ELSE
LWA = 0
END IF
C
IF( JOBC ) THEN
LDW = MAX( 3, 2*NN ) + NN
ELSE
LDW = MAX( 3, 2*NN ) + 2*NN
IF( .NOT.UPDATE )
$ LDW = LDW + N
END IF
IF( NOFACT )
$ LDW = MAX( LWA + 5*N, LDW )
C
INFO = 0
IF( .NOT.( JOBB .OR. JOBC .OR. JOBE ) ) THEN
INFO = -1
ELSE IF( .NOT.( NOFACT .OR. LSAME( FACT, 'F' ) ) ) THEN
INFO = -2
ELSE IF( .NOT.( NOTRNA .OR. LSAME( TRANA, 'T' ) .OR.
$ LSAME( TRANA, 'C' ) ) ) THEN
INFO = -3
ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
INFO = -4
ELSE IF( .NOT.( UPDATE .OR. LSAME( LYAPUN, 'R' ) ) ) THEN
INFO = -5
ELSE IF( N.LT.0 ) THEN
INFO = -6
ELSE IF( LDA.LT.1 .OR.
$ ( LDA.LT.N .AND. ( UPDATE .OR. NOFACT ) ) ) THEN
INFO = -8
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDU.LT.1 .OR. ( LDU.LT.N .AND. UPDATE ) ) THEN
INFO = -12
ELSE IF( LDG.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
INFO = -16
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDWORK.LT.LDW ) THEN
INFO = -24
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB02SD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 ) THEN
IF( .NOT.JOBE )
$ RCOND = ONE
IF( .NOT.JOBC )
$ FERR = ZERO
DWORK( 1 ) = ONE
RETURN
END IF
C
C Compute the 1-norm of the matrix X.
C
XNORM = DLANSY( '1-norm', UPLO, N, X, LDX, DWORK )
IF( XNORM.EQ.ZERO ) THEN
C
C The solution is zero.
C
IF( .NOT.JOBE )
$ RCOND = ZERO
IF( .NOT.JOBC )
$ FERR = ZERO
DWORK( 1 ) = DBLE( N )
RETURN
END IF
C
C Workspace usage.
C
IRES = 0
IXBS = IRES + NN
IXMA = MAX( 3, 2*NN )
IABS = IXMA + NN
IWRK = IABS + NN
C
C Workspace: LWK, where
C LWK = 2*N*N, if LYAPUN = 'O', or FACT = 'N',
C LWK = N, otherwise.
C
IF( UPDATE .OR. NOFACT ) THEN
C
CALL DLASET( 'Full', N, N, ZERO, ONE, DWORK( IXBS+1 ), N )
CALL DSYMM( 'Left', UPLO, N, N, ONE, G, LDG, X, LDX, ONE,
$ DWORK( IXBS+1 ), N )
IF( NOTRNA ) THEN
C -1
C Compute Ac = (I_n + G*X) *A.
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK, N )
CALL DGESV( N, N, DWORK( IXBS+1 ), N, IWORK, DWORK, N,
$ INFO2 )
ELSE
C -1
C Compute Ac = A*(I_n + X*G) .
C
DO 10 J = 1, N
CALL DCOPY( N, A( 1, J ), 1, DWORK( J ), N )
10 CONTINUE
CALL DGESV( N, N, DWORK( IXBS+1 ), N, IWORK, DWORK, N,
$ INFO2 )
DO 20 J = 2, N
CALL DSWAP( J-1, DWORK( (J-1)*N+1 ), 1, DWORK( J ), N )
20 CONTINUE
END IF
C
WRKOPT = DBLE( 2*NN )
IF( NOFACT )
$ CALL DLACPY( 'Full', N, N, DWORK, N, T, LDT )
ELSE
WRKOPT = DBLE( N )
END IF
C
IF( NOFACT ) THEN
C
C Compute the Schur factorization of Ac, Ac = U*T*U'.
C Workspace: need LWA + 5*N;
C prefer larger;
C LWA = N*N, if LYAPUN = 'O';
C LWA = 0, otherwise.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.)
C
IF( UPDATE ) THEN
SJOB = 'V'
ELSE
SJOB = 'N'
END IF
CALL DGEES( SJOB, 'Not ordered', SELECT, N, T, LDT, SDIM,
$ DWORK( LWA+1 ), DWORK( LWA+N+1 ), U, LDU,
$ DWORK( LWA+2*N+1 ), LDWORK-LWA-2*N, BWORK, INFO )
IF( INFO.GT.0 ) THEN
IF( LWA.GT.0 )
$ CALL DCOPY( 2*N, DWORK( LWA+1 ), 1, DWORK, 1 )
RETURN
END IF
C
WRKOPT = MAX( WRKOPT, INT( DWORK( LWA+2*N+1 ) ) + LWA + 2*N )
END IF
IF( NEEDAC ) THEN
CALL DLACPY( 'Full', N, N, DWORK, N, DWORK( IABS+1 ), N )
LWR = NN
ELSE
LWR = 0
END IF
C
IF( NOTRNA ) THEN
TRANAT = 'T'
ELSE
TRANAT = 'N'
END IF
C _
C Compute X*op(Ac) or X*op(T).
C
IF( UPDATE ) THEN
CALL DGEMM( 'NoTranspose', TRANA, N, N, N, ONE, X, LDX, DWORK,
$ N, ZERO, DWORK( IXMA+1 ), N )
ELSE
CALL MB01UD( 'Right', TRANA, N, N, ONE, T, LDT, X, LDX,
$ DWORK( IXMA+1 ), N, INFO2 )
END IF
C
IF( .NOT.JOBE ) THEN
C
C Estimate sepd(op(Ac),op(Ac)') = sepd(op(T),op(T)') and
C norm(Theta).
C Workspace LWR + MAX(3,2*N*N) + N*N, where
C LWR = N*N, if LYAPUN = 'O' and JOB = 'B',
C LWR = 0, otherwise.
C
CALL SB03SY( 'Both', TRANA, LYAPUN, N, T, LDT, U, LDU,
$ DWORK( IXMA+1 ), N, SEPD, THNORM, IWORK, DWORK,
$ IXMA, INFO )
C
WRKOPT = MAX( WRKOPT, LWR + MAX( 3, 2*NN ) + NN )
C
C Return if the equation is singular.
C
IF( SEPD.EQ.ZERO ) THEN
RCOND = ZERO
IF( JOBB )
$ FERR = ONE
DWORK( 1 ) = DBLE( WRKOPT )
RETURN
END IF
C
C Estimate norm(Pi).
C Workspace LWR + MAX(3,2*N*N) + N*N.
C
KASE = 0
C
C REPEAT
30 CONTINUE
CALL DLACON( NN, DWORK( IXBS+1 ), DWORK, IWORK, EST, KASE )
IF( KASE.NE.0 ) THEN
C
C Select the triangular part of symmetric matrix to be used.
C
IF( DLANSY( '1-norm', 'Upper', N, DWORK, N, DWORK( IXBS+1 ))
$ .GE.
$ DLANSY( '1-norm', 'Lower', N, DWORK, N, DWORK( IXBS+1 ))
$ ) THEN
LOUP = 'U'
ELSE
LOUP = 'L'
END IF
C _ _
C Compute RHS = op(Ac)'*X*W*X*op(Ac) or op(T)'*X*W*X*op(T).
C
CALL MB01RU( LOUP, TRANAT, N, N, ZERO, ONE, DWORK, N,
$ DWORK( IXMA+1 ), N, DWORK, N, DWORK( IXBS+1 ),
$ NN, INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
C
IF( UPDATE ) THEN
C
C Transform the right-hand side: RHS := U'*RHS*U.
C
CALL MB01RU( LOUP, 'Transpose', N, N, ZERO, ONE, DWORK,
$ N, U, LDU, DWORK, N, DWORK( IXBS+1 ), NN,
$ INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
END IF
C
C Fill in the remaining triangle of the symmetric matrix.
C
CALL MA02ED( LOUP, N, DWORK, N )
C
IF( KASE.EQ.1 ) THEN
C
C Solve op(T)'*Y*op(T) - Y = scale*RHS.
C
CALL SB03MX( TRANA, N, T, LDT, DWORK, N, SCALE,
$ DWORK( IXBS+1 ), INFO2 )
ELSE
C
C Solve op(T)*W*op(T)' - W = scale*RHS.
C
CALL SB03MX( TRANAT, N, T, LDT, DWORK, N, SCALE,
$ DWORK( IXBS+1 ), INFO2 )
END IF
C
IF( UPDATE ) THEN
C
C Transform back to obtain the solution: Z := U*Z*U', with
C Z = Y or Z = W.
C
CALL MB01RU( LOUP, 'No transpose', N, N, ZERO, ONE,
$ DWORK, N, U, LDU, DWORK, N, DWORK( IXBS+1 ),
$ NN, INFO2 )
CALL DSCAL( N, HALF, DWORK, N+1 )
C
C Fill in the remaining triangle of the symmetric matrix.
C
CALL MA02ED( LOUP, N, DWORK, N )
END IF
GO TO 30
END IF
C UNTIL KASE = 0
C
IF( EST.LT.SCALE ) THEN
PINORM = EST / SCALE
ELSE
BIGNUM = ONE / DLAMCH( 'Safe minimum' )
IF( EST.LT.SCALE*BIGNUM ) THEN
PINORM = EST / SCALE
ELSE
PINORM = BIGNUM
END IF
END IF
C
C Compute the 1-norm of A or T.
C
IF( UPDATE ) THEN
ANORM = DLANGE( '1-norm', N, N, A, LDA, DWORK )
ELSE
ANORM = DLANHS( '1-norm', N, T, LDT, DWORK )
END IF
C
C Compute the 1-norms of the matrices Q and G.
C
QNORM = DLANSY( '1-norm', UPLO, N, Q, LDQ, DWORK )
GNORM = DLANSY( '1-norm', UPLO, N, G, LDG, DWORK )
C
C Estimate the reciprocal condition number.
C
TMAX = MAX( SEPD, XNORM, ANORM, GNORM )
IF( TMAX.LE.ONE ) THEN
TEMP = SEPD*XNORM
DENOM = QNORM + ( SEPD*ANORM )*THNORM +
$ ( SEPD*GNORM )*PINORM
ELSE
TEMP = ( SEPD / TMAX )*( XNORM / TMAX )
DENOM = ( ( ONE / TMAX )*( QNORM / TMAX ) ) +
$ ( ( SEPD / TMAX )*( ANORM / TMAX ) )*THNORM +
$ ( ( SEPD / TMAX )*( GNORM / TMAX ) )*PINORM
END IF
IF( TEMP.GE.DENOM ) THEN
RCOND = ONE
ELSE
RCOND = TEMP / DENOM
END IF
END IF
C
IF( .NOT.JOBC ) THEN
C
C Form a triangle of the residual matrix
C R = op(Ac)'*X*op(Ac) + op(Ac)'*X*G*X*op(Ac) + Q - X,
C or _ _ _ _ _ _
C R = op(T)'*X*op(T) + op(T)'*X*G*X*op(T) + Q - X,
C exploiting the symmetry. Actually, the equivalent formula
C R = op(A)'*X*op(Ac) + Q - X
C is used in the first case.
C Workspace MAX(3,2*N*N) + 2*N*N, if LYAPUN = 'O';
C MAX(3,2*N*N) + 2*N*N + N, if LYAPUN = 'R'.
C
CALL DLACPY( UPLO, N, N, Q, LDQ, DWORK( IRES+1 ), N )
JJ = IRES + 1
IF( LOWER ) THEN
DO 40 J = 1, N
CALL DAXPY( N-J+1, -ONE, X( J, J ), 1, DWORK( JJ ), 1 )
JJ = JJ + N + 1
40 CONTINUE
ELSE
DO 50 J = 1, N
CALL DAXPY( J, -ONE, X( 1, J ), 1, DWORK( JJ ), 1 )
JJ = JJ + N
50 CONTINUE
END IF
C
IF( UPDATE ) THEN
CALL MB01RX( 'Left', UPLO, TRANAT, N, N, ONE, ONE,
$ DWORK( IRES+1 ), N, A, LDA, DWORK( IXMA+1 ), N,
$ INFO2 )
ELSE
CALL MB01RY( 'Left', UPLO, TRANAT, N, ONE, ONE,
$ DWORK( IRES+1 ), N, T, LDT, DWORK( IXMA+1 ), N,
$ DWORK( IWRK+1 ), INFO2 )
CALL DSYMM( 'Left', UPLO, N, N, ONE, G, LDG,
$ DWORK( IXMA+1 ), N, ZERO, DWORK( IXBS+1 ), N )
CALL MB01RX( 'Left', UPLO, 'Transpose', N, N, ONE, ONE,
$ DWORK( IRES+1 ), N, DWORK( IXMA+1 ), N,
$ DWORK( IXBS+1 ), N, INFO2 )
END IF
C
C Get the machine precision.
C
EPS = DLAMCH( 'Epsilon' )
EPSN = EPS*DBLE( N + 4 )
EPST = EPS*DBLE( 2*( N + 1 ) )
TEMP = EPS*FOUR
C
C Add to abs(R) a term that takes account of rounding errors in
C forming R:
C abs(R) := abs(R) + EPS*(4*abs(Q) + 4*abs(X) +
C (n+4)*abs(op(Ac))'*abs(X)*abs(op(Ac)) + 2*(n+1)*
C abs(op(Ac))'*abs(X)*abs(G)*abs(X)*abs(op(Ac))),
C or _ _
C abs(R) := abs(R) + EPS*(4*abs(Q) + 4*abs(X) +
C _
C (n+4)*abs(op(T))'*abs(X)*abs(op(T)) +
C _ _ _
C 2*(n+1)*abs(op(T))'*abs(X)*abs(G)*abs(X)*abs(op(T))),
C where EPS is the machine precision.
C
DO 70 J = 1, N
DO 60 I = 1, N
DWORK( IXBS+(J-1)*N+I ) = ABS( X( I, J ) )
60 CONTINUE
70 CONTINUE
C
IF( LOWER ) THEN
DO 90 J = 1, N
DO 80 I = J, N
DWORK( IRES+(J-1)*N+I ) = TEMP*( ABS( Q( I, J ) ) +
$ ABS( X( I, J ) ) ) +
$ ABS( DWORK( IRES+(J-1)*N+I ) )
80 CONTINUE
90 CONTINUE
ELSE
DO 110 J = 1, N
DO 100 I = 1, J
DWORK( IRES+(J-1)*N+I ) = TEMP*( ABS( Q( I, J ) ) +
$ ABS( X( I, J ) ) ) +
$ ABS( DWORK( IRES+(J-1)*N+I ) )
100 CONTINUE
110 CONTINUE
END IF
C
IF( UPDATE ) THEN
C
DO 130 J = 1, N
DO 120 I = 1, N
DWORK( IABS+(J-1)*N+I ) =
$ ABS( DWORK( IABS+(J-1)*N+I ) )
120 CONTINUE
130 CONTINUE
C
CALL DGEMM( 'NoTranspose', TRANA, N, N, N, ONE,
$ DWORK( IXBS+1 ), N, DWORK( IABS+1 ), N, ZERO,
$ DWORK( IXMA+1 ), N )
CALL MB01RX( 'Left', UPLO, TRANAT, N, N, ONE, EPSN,
$ DWORK( IRES+1 ), N, DWORK( IABS+1 ), N,
$ DWORK( IXMA+1 ), N, INFO2 )
ELSE
C
DO 150 J = 1, N
DO 140 I = 1, MIN( J+1, N )
DWORK( IABS+(J-1)*N+I ) = ABS( T( I, J ) )
140 CONTINUE
150 CONTINUE
C
CALL MB01UD( 'Right', TRANA, N, N, ONE, DWORK( IABS+1 ), N,
$ DWORK( IXBS+1 ), N, DWORK( IXMA+1 ), N, INFO2 )
CALL MB01RY( 'Left', UPLO, TRANAT, N, ONE, EPSN,
$ DWORK( IRES+1 ), N, DWORK( IABS+1 ), N,
$ DWORK( IXMA+1 ), N, DWORK( IWRK+1 ), INFO2 )
END IF
C
IF( LOWER ) THEN
DO 170 J = 1, N
DO 160 I = J, N
DWORK( IABS+(J-1)*N+I ) = ABS( G( I, J ) )
160 CONTINUE
170 CONTINUE
ELSE
DO 190 J = 1, N
DO 180 I = 1, J
DWORK( IABS+(J-1)*N+I ) = ABS( G( I, J ) )
180 CONTINUE
190 CONTINUE
END IF
C
IF( UPDATE ) THEN
CALL MB01RU( UPLO, TRANAT, N, N, ONE, EPST, DWORK( IRES+1 ),
$ N, DWORK( IXMA+1 ), N, DWORK( IABS+1 ), N,
$ DWORK( IXBS+1 ), NN, INFO2 )
WRKOPT = MAX( WRKOPT, MAX( 3, 2*NN ) + 2*NN )
ELSE
CALL DSYMM( 'Left', UPLO, N, N, ONE, DWORK( IABS+1 ), N,
$ DWORK( IXMA+1 ), N, ZERO, DWORK( IXBS+1 ), N )
CALL MB01RY( 'Left', UPLO, TRANAT, N, ONE, EPST,
$ DWORK( IRES+1 ), N, DWORK( IXMA+1 ), N,
$ DWORK( IXBS+1 ), N, DWORK( IWRK+1 ), INFO2 )
WRKOPT = MAX( WRKOPT, MAX( 3, 2*NN ) + 2*NN + N )
END IF
C
C Compute forward error bound, using matrix norm estimator.
C Workspace MAX(3,2*N*N) + N*N.
C
XANORM = DLANSY( 'Max', UPLO, N, X, LDX, DWORK )
C
CALL SB03SX( TRANA, UPLO, LYAPUN, N, XANORM, T, LDT, U, LDU,
$ DWORK( IRES+1 ), N, FERR, IWORK, DWORK( IXBS+1 ),
$ IXMA, INFO )
END IF
C
DWORK( 1 ) = DBLE( WRKOPT )
RETURN
C
C *** Last line of SB02SD ***
END
|